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Abstract 
In biomedical research, time-lapse microscopy is an important tool to be able to 
study processes which are too slow for humans to observe. This technique is 
powerful since it gives information about how parameters of single cells change 
over time. 
 
The problem to be solved in this project is to segment MuSCs (Muscular Stem Cells) 
in images and to classify them. This is done by using a deep neural network trained 
using supervised learning. The network is inspired by the architecture of the U-net, 
but extended by using temporal data to see if it can increase its performance. The 
network is trained on images from the time-lapse sequence, where the temporal 
aspect is used to create a short-term memory for the network. The results are 
compared to a network of the same architecture but without the temporal aspect in 
the training. 
 
The temporal approach shows that the network learns faster what is roughly a 
MuSC and what is not, but in the end it gives a slightly higher and more accurate 
classification of MuSCs by training the network without giving it a short-term 
memory, for this task. 
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Sammanfattning 
Tidsförloppsmikroskopi är ett viktigt verktyg inom biomedicinsk forskning, 
framförallt om man vill studera processer som är för långsamma för en människa att 
observera. Det är en kraftfull teknik eftersom den ger information om hur 
parametrar för enskilda celler ändras över tiden. 
 
Det problem som ska lösas i det här projektet är att segmentera muskelstamceller i 
bilder och klassificera dem. Tillvägagångssättet är att använda djupa neurala 
nätverk, tränade genom kontrollerad inlärning. Arkitekturen på nätverket är 
inspirerat utav U-net, men med tillägget att det använder temporal data för att se 
ifall den kan prestera bättre. Nätverket är tränat på bilder tagna från sekvenser av 
tidsförloppsmikroskopi, där den temporala aspekten i sekvenserna används för att 
skapa ett korttidsminne till nätverket. Resultatet utav nätverket jämförs med 
resultatet av ett nästan likadant nätverk, skillnaden är att det inte använder 
temporal data när det tränas. 
 
Nätverket som tränas med temporal data visar sig snabbare lära sig vad som grovt 
är en muskelstamcell i en bild och vad som inte är det. Men i slutändan visar det sig 
att nätverket som tränas utan temporal data presterar lite bättre och har lite högre 
precision än nätverket med ett korttidsminne. 
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1 Introduction 
 

In biomedical research, time-lapse (recorded with a lower frame rate than in a 
normal video) microscopy (transmission microscopy) is an important tool to be able 
to study processes which are too slow for humans to observe. This technique is 
powerful since it gives information about how parameters of single cells changes 
over time. Different types of stem cells are often analyzed by this method, e.g. 
MuSCs (Muscle Stem Cells), HSC (Hematopoietic Stem Cells), HeLa (Henrietta Lacks, 
a patient who died in cancer in 1951 [1]) cells. 

To find an object in an image is known as segmentation.  By segmenting stem cells, 
i.e. retrieving the area of the cells, and also tracking each cell and finding the 
patterns of its path and splits (also known as cell tracking), one can draw medical 
conclusions. This can be done by using algorithms on these segmented areas and 
tracking paths to extract biologically interesting information such as lineage trees, 
cell sizes and migration speeds [2]. But up to this date there are not any bulletproof 
algorithms that can analyze time-lapse sequences without errors or that they are 
very time consuming (e.g. demands manual work). 

To get a good tracking result, a good segmentation result is important. Today the 
state-of-the-art in image segmentation is deep learning, implemented by fully 
convolutional networks [3]. Deep learning can be used for many different purposes. 
It can e.g. be used to classify objects in an image, to classify a speaker, generate 
words and music, generate images, and much more [4], [5]. 

The first thing to do after deciding to use deep learning to solve a problem, is to 
decide if a discriminative or a generative model should be used, and if supervised or 
unsupervised learning should be used. The problem to be solved in this project is to 
segment MuSCs and to classify them. This is done by using a discriminative model 
trained using supervised learning. The network/model is inspired by the 
architecture of the U-net [3], but extended by using temporal data to potentially 
increase its performance. The network will consist of convolutional and 
deconvolutional layers, also known as a fully convolutional network. The input 
image, containing stem cells, will be downsampled to compressed features and then 
these features will be upsampled where the output has the same size as the input 
image, but with the stem cells segmented and classified. This is possible because 
the downsampling, and later upsampling steps, allow the segmentation to gain 
contextual knowledge from a wider spatial area when classifying single pixels as 
belonging to cells or background. 

A cell tracking-system consists of several components, not just segmentation. The 
components are: 

x Image preprocessing 

x Segmentation 

x Track-linking 

x Post-processing of tracks 
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This project will focus on the two first components, image preprocessing and 
segmentation by building and train a fully convolutional network to segment MuSCs 
in images. 

 

2 Related Work 
 

2.1 U-Net Biomedical Image Segmentation 
In a similar task of segmenting different cells in biomedical images, the first fully 
convolutional network of its kind was built by [3] and it is called the U-net. It was 
the EM segmentation challenge at ISBI 2012 [6] that motivated Ronneberger et al. 
to build this state-of-the-art network. The U-net performed better than any other 
competitor in terms of segmentation. 

The EM segmentation challenge at ISBI 2012 only provide 30 training images, which 
is way too few to train a deep convolutional network. What was done to handle this 
issue was to use data augmentation by rotating and deforming the 30 images so 
that a larger training dataset could be used. Even though the use of data 
augmentation, it was still kind of few images to train a deep network for this task. 
Therefore, Ronneberger et al. chose a network architecture to make sure that this 
wasn´t a problem. 

To segment images with help of deep learning, the best way is to use fully 
convolutional networks, which contain an “ordinary convolutional network”, i.e. a 
downsampling part, but also a deconvolutional part, i.e. an upsampling part. By 
using this symmetrical structure, and also sending feature information from the 
downsampling part to the respective (in the manner of size) upsampling part, few 
data/images was enough to train the network. By passing over information from the 
downsampling to the upsampling helps the network to learn the spatial and more 
detailed information better. The symmetrical network can be seen as an “U”, hence 
the name U-net. 

In biomedical images of cells, it can sometimes be tricky to see the difference 
between if it is one cell or if there are several cells with touching edges. To make 
sure that the network learns to see this difference, Ronneberger et al. added a 
weight to their cost function to force the network to learn these pixels between 
close cells. Also a weight was added to handle the class imbalance. 

The U-net showed great results compared to their competitors on several different 
cell images, not just one kind of cell. The network was implemented in the API Caffe 
[7] and only took 10 hours to train on a NVidia Titan GPU (6 GB). 

The training images were of size 512x512 and the patch size in the convolutions was 
a receptive field of 3x3. The U-net doesn´t use padding in the convolutions, 
therefore the information sent from the downsampling part to the upsampling part 
has to be cropped to be able to be concatenated. This leads to the final output 
image to be of smaller size than the input image. The network is of 23 convolutional 
and deconvolutional layers, where there are two convolutional layer in a row before 
a pooling or upsampling (deconvolution) is performed. The activation function used 



7(64) 
 

through the network is ReLU and the output of the network is a 1x1 convolution to 
map each feature vector to the desired number of classes. The cost function used is 
cross entropy (with a weight as mentioned) after performing a softmax on the 
output. Also, when a network is very deep it is important to initialize the weights in 
the network well, which has been done in the U-net. The weights are initialized by 

drawing them from a Gaussian distribution with a standard deviation of √2
𝑁

, where 

N is the number of incoming nodes of one neuron (i.e. N is the patch size times the 
number of feature maps in the previous layer). 

2.2 U-Net RFI Image Segmentation 
In the paper [8] they have also used a U-net for the classification issue of finding 
radio frequency interference (RFI) signals in radio data. Their goal is to mitigate the 
RFI signals affecting the radio data. 

Akeret et al. have trained the network on both simulated data and real data from a 
telescope. The problem with the real data is that there isn´t possible to get the 
ground truth, i.e. the segmentation mask of the input, which result in biased results 
since they create the “ground truth” with another algorithm doing the same thing 
as the network is supposed to achieve. 

The network is implemented with the API TensorFlow [9]. The network only takes a 
few hours to train on a NVidia Kepler K20 GPU. 

The network consists of 12 layers, where each convolutional layer has a receptive 
field and a patch size of 3x3, each pooling and upsampling is of 2x2, there is a 
dropout rate of 0.5 and they also use a L2 regularizer of strength 0.001. The 
network is trained for 100 epochs with mini batch-size of 32. The images used for 
training are of size 276x600. They use a momentum optimizer with a decaying 
learning rate, starting at 0.2. The cost function is cross entropy used on the output 
of a softmax. 

The network shows promising results, but there is a lack of good training data, 
though it is said to be possible to access much more training data in the near future. 
One improvement to be made, that they mention, is to put some kind of penalizing 
to the cost function to make it easier for the network to learn which are 
contaminated RFI pixels and which are not. 

2.3 Training Deconvolution Network for Semantic Segmentation 
Fully convolutional networks have become very popular to use for the task of 
semantic segmentation. Noh et al. in [10] were one of the first to use these kinds of 
network for the task of semantic segmentation. The pre-trained VGG16 network 
[11] is used as their downsampling part and then they train and learn an 
upsampling part. To perform upsampling, first (what is here called) unpooling is 
performed and then deconvolution (as it is called here). This can be discussed since 
there exist a lot of different definitions for “unpooling” and “deconvolution” out 
there. The unpooling is done by passing over information from the corresponding 
pooling layer in the downsampling (therefore, also this network could be called U-
net). The information is called switch variables, but basically it is indices of the 
maximum value in each 2x2 area that they use in their max-pooling. This creates a 
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sparse tensor (many feature maps). Each feature map is deconvolved which makes 
each feature map dense, by using learned filters. 

The network contains in total 28 layers, 13 layers in the downsampling part, 13 
layers in the upsampling part, and 2 fully-connected layers as a bridge between the 
downsampling and the upsampling. The pooling performed is max-pooling and the 
activation function used is ReLU. A softmax is performed on the output of the 
network to get a pixel-wise prediction. 

The dataset used is PASCAL VOC 2012 dataset. It contains 12031 training and 
validation images in total, each image of size 224x224. Since it is a limited number 
of training images to learn such a deep network, a batch normalization is performed 
to reduce the internal covariate shift (to escape local minima in optimization) and 
two-stage training which means that first the network is trained with easy 
examples, and then fine-tune the network by training it on more challenging 
examples (i.e. data augmentation is used, where the easy images are centred and 
cropped). 

The network is implemented with the API Caffe. A momentum is used as an 
optimizer with learning rate 0.01 and momentum as decay to 0.9. The weights in 
the upsampling part is initialized with zero-mean Gaussians. The patch 
size/receptive field in the convolutions is 3x3, except in the output where 1x1 is 
used for prediction of each pixel independently. The batch size is of 64 images. For 
convergation it takes 20000 iterations for training on the easier images and 40000 
iterations for the more challenging images.  Training takes 6 days on a single NVidia 
GTX Titan GPU (12G). 

This network was state-of-the-art in the PASCAL VOC 2012 benchmark when the 
article was written, with an accuracy of 72.5%. 

2.4 SegNet Image Segmentation 
The SegNet [12] is a fully convolutional network built for the use of road scene 
understanding applications (e.g. autonomous driving). It is similar to the network 
mentioned above. The network is supposed to label each pixel with the class of the 
segmented object it is. To save time Badrinarayanan et al. have used the pre-trained 
weights and biases in the downsampling part from the VGG16 network [11]. This 
saves both time and memory (the fully-connected layers are skipped in the VGG16 
network). In the upsampling part information is passed from the corresponding 
pooling layer (max-pooling) to the upsampling layer. Though compared to the U-net 
(even this could also be called a U-net), the information passed over is different. 
Here they use the indices of each and every 2x2 pooling, which only uses a small 
amount of memory compared to storing all the full feature maps. This will create a 
sparse tensor. These sparse feature maps (sparse tensor) are then convolved with a 
trainable decoder filter bank (where each upsample kernel is initialized using 
bilinear interpolation weights) to produce dense feature maps. Finally, a batch 
normalization is applied to each feature map. 

The network consists of 26 layers, where 13 of them are pre-trained. The activation 
function used is ReLU and a softmax is performed on the output to get the 
probability of each pixel independently. The cost function used is cross entropy and 
the optimizer is momentum with a learning rate of 0.1 and a momentum of 0.9. 
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Everything is implemented with the API Caffe. For training there are 367 RGB 
images and for testing there are 233 RGB images, where each image is of size 
360x480 (the dataset CamVid road scene). The batch size is of 12 images and train 
until the loss converges. Imbalanced classes are handled by weighting each class in 
the cost function by median frequency balancing. The weight for each class is then 
the median of the class frequencies of all the images in the training data divided by 
the class frequency. The network is trained on a NVidia Titan GPU. 

The SegNet outperformed the other methods tried out for the same task, at the 
moment when the article was written. 

The SegNet has also been trained on another dataset, containing indoor images. 
This was not the primary task of SegNet, rather to test/show that it performs well 
on this kind of data too. 

Finally, there is a discussion of that Bayesian neural networks is something that 
should be experimented with in the future for this application. 

 

3 Artificial Neural Networks 
 

The human brain can be seen as a supercomputer, with its primary visual cortex 
(also known as V1) containing 140 million neurons and tens of billions of 
connections between them, and the rest of the visual cortices (V2, V3, V4 and V5) 
which are doing more complex image processing. It is no wonder that the human 
race has a habit of seeing patterns in most of things (even if there exist none) [13]. 

3.1 History 
The development of artificial neural networks (ANNs) first started in 1943 when 
Warren McCulloch and Walter Pitts tried to figure out how the brain works. The first 
model was built as an electrical circuit of a simple neural network. In 1949 Donald 
Hebb discovered that the more time a neural path is used, the more it will be 
strengthened. 

The first system ever built for commercial use was MADALINE (the non-commercial 
system which did the same thing was called ADALINE), a work done by Bernard 
Widrow and Marcian Hoff from Stanford in 1959. The system read streaming bits 
from a phone line, and from that it could predict the next bit. Despite the later 
success of neural nets, the traditional von Neumann architecture took over the 
computing scene. 

In 1972 Kohonen and Anderson developed a neural network that used matrices. 
Without knowing it at the time, they were creating an array of analog ADALINE 
circuits. The difference was that it activated a set of outputs instead of just one. 
During the same decade, the first multilayer perceptron (MLP) network, which was 
an unsupervised network, was created. More specifically it was created in 1975. 
Thanks to the discovery of MLP and a paper that John Hopfield of Caltech published 
in 1982, the interest in the field was renewed. 
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In 1986, an attempt of extending the Widrow-Hoff rule to multiple layers was made. 
It was at that moment the, as we call it today, backprogagation method was born. 
However, back then it didn’t exist powerful enough computers, which was needed 
for the computationally heavy backpropagation. There is a reason why it took all the 
way from then till 2011 to start using that theory at a large scale, because by then 
the computers were powerful enough (even though it still takes a long time to train 
networks with multiple layers today) [14]. 

3.2 Perceptrons 
Artificial neural networks consist of multiple layers of neurons (also called units). 
There is an input layer, a hidden layer or several hidden layers (it doesn’t necessarily 
need to exist a hidden layer), and an output layer. Normally a neural network is 
defined as a MLP if there are two or more hidden layers. 

Perceptrons are one sort of neurons and they were developed in the 1950’s and 
1960’s by a scientist called Frank Rosenblatt (inspired of the work McCulloch and 
Pitts, mentioned earlier). Very briefly, the perceptron takes several binary inputs 
and produces a single binary output (See Figure 1). 

 
Figure 1 The perceptron. 

Each binary input is multiplied with a weight, and if the sum of all these input-
multiplications is greater than some threshold value the output will be 1, else it will 
be 0. A common approach is to move the threshold value to the same side as the 
weight and input, and call it the bias. 

 

𝑜𝑢𝑡𝑝𝑢𝑡 = {
1   , 𝑖𝑓 ∑ 𝑤𝑖𝑥𝑖 + 𝑏 > 0𝑖
0   , 𝑖𝑓 ∑ 𝑤𝑖𝑥𝑖 + 𝑏 ≤ 0𝑖

       (1) 

 

3.3 ANNs of Today 
Today it is more common with neurons that can take inputs others than binary 
values, and also give an output that is not binary. 

Each neuron has several inputs, each multiplied by a weight. The summation of all 
these multiplications are added with the threshold value, also called the bias as 
mentioned above. The final value of this is used as an input to an activation function 
(the sigmoid function is often used as an activation function, see Figure 2 and eq.2. 
Though recently ReLU has become more common, see Figure 11 and eq.37), which 
gives an output that is sent to the next layer of neurons. This output differs from the 
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perceptrons since it is not binary [15], [16]. The great difference is that here a small 
change in the weights and bias will only cause a small change in the output, which is 
beneficial for the learning process. 

𝑓(𝑥) = 1
1+𝑒−𝑥

 (2) 

 

 
Figure 2 The sigmoid function. 

When training the system, it is common to divide the data (supervised learning is 
used, which means that each input data has a label of its ground truth) into training 
data, validation data and test data (where the training data is of greater size than 
the validation data and test data combined). The training data is used as input to 
the system, where the biases are initialized (can be set to zero) and weights are 
randomly initialized (the initialization part can be done in several ways, but random 
is the most common one). The system is then evaluated by a cost function at the 
end of the network. This is the function that tells us if the weights and biases are 
well chosen, or if they have to change. The goal is to find the global minimum of the 
cost function (though it is easy to get stuck in a local minimum). To minimize the 
cost function, the earlier mentioned backpropagation method is used combined 
with gradient descent. As the name of the method reveals, the error is propagated 
backwards in the network and simultaneously update the biases and weights with 
help of the backpropagated cost function. Within this method, and the whole 
network actually, there exists several important parameters that control other 
parameters. These hyperparameters have to be selected somehow. It is here the 
validation data is used. After each epoch (one run over the network with all training 
data), when new weights and biases have been calculated, the network is tested 
with the validation data. To iteratively do this after each epoch, one can plot the 
cost function of the training data and the validation data. From this plot it is 
possible to extract information that tells whether a certain hyperparameter should 
be changed or not. Though this is an iterative process, and training neural networks 
consists of lots of trial-and-error to find the optimal hyperparameters, if it is even 
possible [17], [18]. 
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After this whole procedure the test data is used to evaluate the network as a final 
product. 

4 Convolutional Neural Networks 
 

A convolution is a mathematical operation that can be done in different dimensions. 
Here a 2D convolution is used. This means that a filter is swept over the entire 
matrix (image), element by element (left to right, top to bottom). If e.g. a 3x3 filter 
is used, then the filter is placed over a 3x3 area of the matrix, and each and 
corresponding element is multiplied with each other and then everything is divided 
by the sum of the kernel (the division of the sum is not a part of the definition of a 
convolution, but it is implemented in the area of deep learning). The output is that 
value placed at the same location as the center of the 3x3 area in the new matrix 
output. If the matrix to be convolved isn’t padded with zeros, the output from the 
convolutional procedure will be reduced in size compared to the input. In Figure 3 a 
3x3 kernel is convolved over a non-padded 8x8 matrix (only the first operation in 
the convolution is being showed. The division of the sum of the filter can be 
assumed to have already been done in the filter), which results in an output of 
reduced size compared to the input.  

 
Figure 3 The first operation for the first output pixel of the 2D convolution. 

In an ANN, the layers are said to be fully connected. This means that each unit, or 
neuron, in a layer is connected to all the units in adjacent layers. 

When patterns are to be recognized in images, a convolutional neural network 
(CNN) is recommended to use. This is because of several reasons (e.g. that ANN 
doesn’t take the spatial structure into account), but one important reason is the 
computational complexity. E.g. if the input is an image of size 50x50 pixels, this 
means that there is a need of 2500 units in the input layer. And then to have several 
hidden layers, with several hidden units, with thousands of training-images, one can 
easily imagine the computational effort, especially if the trial-and-error of finding 
the correct hyperparameters is also considered. 
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So, CNNs are great for classification of images and are fast for training deep, multi-
layer networks. Though, with CNN there are more hyperparameters to 
decide/optimize (as far as possible, since optimizing all the hyperparameters is not a 
converging process), which will be mentioned further on. 

Convolutional neural networks use three basic ideas: 

x Local receptive fields 

x Shared weights and biases 

x Pooling 

4.1 Local Receptive Fields 
In fully connected layers, the input can be seen as a vertical line of neurons. In 
CNNs, the input can be seen as a square of the same size as the input image, where 
every pixel is replaced by a neuron (see Figure 4). 

 
Figure 4 The input neurons. 

As in the ordinary neural network, the input neurons/pixels are connected to the 
hidden layer of neurons. But instead of the case where every neuron in the input is 
connected to every neuron in the hidden layer, the connections are made in small 
localized regions of the input image. I.e. each neuron in the first hidden layer is 
connected to a region of input neurons, as in Figure 5. 

 
Figure 5 Local perceptive field. 

The region in the input image, which are connected to a hidden neuron, is called the 
local receptive field for that hidden neuron (size m x m). It can be thought of as a 



14(64) 
 

little window on the input pixels where each connection learns a weight and the 
hidden neuron learns an overall bias. 

The local receptive field is slid over the whole image, and for each local receptive 
field there is a different hidden neuron in the first hidden layer (this is the 
convolution part). When the field is slid across the image, it can move one or 
several pixels at a time. How many pixels the window is being moved is called the 
stride length. 

4.2 Shared Weights and Biases 
For each hidden neuron, there are m x m weights and a bias. What is special about 
this is that all the hidden neurons have the same m x m weights and bias.  This 
means that all the hidden neuron in the first hidden layer detect the same feature (a 
feature could be a vertical line, corner, etc.) in the input image, just at different 
locations. Therefore, CNNs are well adapted to the translational invariance of 
images. Because of this, the map from the input layer to the hidden layer is called a 
feature map. The weights and bias defining the feature maps is called the shared 
weights and the shared bias. 

In a CNN, each hidden layer (also called kernel or filter) has several feature maps, 
since each feature map only recognize one feature in an image (see Figure 6). 

 
Figure 6 The first convolutional layer generates several feature maps (5 here) from the input image. 
Each feature map has its own filter (the trained weights) and therefore each feature map finds 
different features in the input image. 

The advantage of using shared weights and shared bias is that it reduces the 
number of parameters in the CNN. 

4.3 Pooling 
CNNs contain layers called pooling layers, which are used after the convolutional 
layer. The pooling layer simplify the information in the output from the 
convolutional layer (make each feature map condensed). 

A common pooling-method is the max-pooling. This method takes the maximum 
activation output in a k x k (e.g. k=2) region, which becomes the pooling unit (see 
Figure 7). The pooling is done to each feature map separately. 
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Figure 7 The procedure of max-pooling (stride length equal to two). 

Max-pooling can be thought of as a way of asking the network if any feature is 
found in the image. If so, the exact positional information is thrown away. The only 
important part for the network is the position relative to other features. 

Pooling layers provide an invariance to small translations of the input. There are 
several different pooling operations, e.g. max-pooling, average-pooling, mean-
pooling, etc. The most common one is max-pooling. The general idea of pooling is to 
locally aggregate the input by applying a nonlinearity to the content of some 
patches. The parameter of the pooling layer is to decide the pooling area. If the 
pooling area is e.g. 2x2, then a patch of size 2x2 is slid all over each feature map. 
The stride length has to be set here as a hyperparameter. That is for how many 
pixels the patch should move at a time. E.g. with stride equal to one there will be 
overlapping with patch-size 2x2, but with stride equal to two there won’t be any 
overlap. 

The output is the same amount of feature maps, reduced in size, with more 
important and compressed information. If a feature map (input) gets pooled by this 
max-pooling layer (if the patch-size is 2x2), the size is reduced by half. For each 2x2 
patch, there is only one-pixel output, the maximum value of the four values of the 
patch. And for average-/mean-pooling, it works in the same way, but instead of the 
maximum value of the four pixels, the output is the average/mean of the four 
pixels. 

4.4 The Network 
The CNN is these three parts put together. Usually the network ends with a fully 
connected layer (or several fully connected layers), which are exactly the same as 
described for ANNs. 

The backpropagation method is also used for CNNs for training, as it was described 
for ANNs. 
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5 Fully Convolutional Networks 
 

A fully convolutional network (FCN) [19] is where both downsampling (an ordinary 
convolutional neural network) and upsampling (also called deconvolution [20]) are 
used together to give an output of the same size (not necessarily exactly the same 
size) as the input of the network. These types of networks are often used in 
segmentation tasks, since the output is the input with a highlight of the area of the 
segmented object. Instead of getting an output from the downsampling part that is 
a label from the classifier, the output is features that is being used as input in an 
unpooling step or deconvolutional step (the definition of a deconvolutional layer is 
different in different papers). E.g. in the API TensorFlow [9] one can use the function 
tf.image.resize_images which uses interpolation. A more common approach is to 
use the transpose of a convolution with stride larger than one, to increase the size 
of the image. A proper way to do this, is to use the same techniques as in the U-net 
[3] (which has been implemented in other networks as well), where the 
convolutional output from each layer in the downsampling part is sent over to the 
corresponding upsampling layer, and concatenated as an input to that layer. 
Another way is to send over the pooling information in the downsampling part to 
the upsampling part, and then use a trained filter for unpooling/deconvolution. This 
improves the spatial information in the upsampling part and therefore also the 
whole fully convolutional network. 

5.1 Upsampling 
The part of the network that generates an image from features of a smaller 
dimension, is what defines a fully convolutional network. This upsampling part can 
be solved in different ways, either by unpooling [21] (several techniques for this) or 
by deconvolution (also called convolutional sparse coding [22]). A technique 
mentioned in [22], is to first use deconvolution to scale up the image, combined 
with information from the corresponding pooling layer in the downsampling part of 
the network, which create "switches" (the indices of the activated elements in the 
pooling step) that contain information about the location of the features (see Figure 
8 [22]). 
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Figure 8 Unpooling/upsampling with the use of switches, where x,y is the pixel location and k is the kth feature map in the 
kernel. 

To perform a deconvolution (here used as upsampling) can be done by using a 
transposed convolution layer with a stride greater than one (if padding is used).  

Transposed convolutions [23] are used when going from something with the shape 
of some convolution output, to something that has the shape of its input while 
maintaining a connectivity pattern that is compatible with the mentioned 
convolution [24]. For upsampling they are used to project feature maps to a higher 
dimension. This is done by flipping the filter kernel over the first and second 
dimension and then just perform a convolution. 

The difference between a 2D convolution and a 2D transposed convolution is that in 
the convolution, as mentioned earlier, the dot product is used between the image 
and the filter. In the transposed convolution, each input pixel is multiplied with a 
learned filter and the output is the new upscaled matrix. Since it is a convolution, 
the filter is slid over the whole input which gives a superimposed output where 
each filter-multiplication is added where it is superimposed. By using a stride length 
greater than one (if padding is used), the size of the output will be larger than the 
input, i.e. there will be an upsampling since the stride here is an output-stride 
where it is about how to move the filter, instead of an input-stride as in an ordinary 
convolution where it is about how many pixels of the input matrix to move at a 
time. See Figure 9 to better understand the transposed convolution procedure by 
using an example [25]. 
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Figure 9 The procedure of transposed convolution/upsampling. In the example, the result shown is 
after the last input element. Here there are stride length one and no padding is used. 

What is good with the transposed convolution compared to an interpolation, e.g. 
bilinear upsampling, is that the transposed convolutional layer is learning, while 
bilinear upsampling is fixed [19]. 

 

6 Preprocessing & Data 
 

The simplest form of preprocessing might be a linear transformation of the input 
data. A more complex form is dimensionality reduction, which can improve the 
result even though information is reduced. 

To gain some prior knowledge and use it in the preprocessing stage can improve a 
neural networks’ result dramatically. 

Regarding the dimensionality reduction, it can be as simple as discarding a subset of 
the original input data, or it can consider approaches involving forming linear or 
non-linear combinations of the original variables to generate inputs for the neural 
network. These combinations of input are called features, and the process of 
generating the features is called feature extraction. 

The motivation of dimensionality reduction is that it can reduce the impact of the 
worst effects of the consequences of high dimensionality. If a network has fewer 
inputs it has fewer adaptive parameters (e.g. weights) to be determined, which 
often means that the network gets better generalization properties. Also, a neural 
network with fewer weights may be faster to train. 

Just consider the example of having an image of size 250x250 as input. This means 
that there are 62500 input units and therefore 62501 weights (including the bias) 
for every hidden unit to learn. A huge computational resource would be required to 
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find the minimum of the cost function. To tackle this problem, preprocessing the 
data can be a solution. A technique of dimensionality reduction can be considered, 
where pixel averaging is used on a block of pixels of the input image. The averaged 
pixels are examples of features. This procedure reduces the information, and can 
therefore lead to poor results. However, this problem doesn’t exist for convolutional 
neural networks, which will be described further on [26]. 

Regarding the simpler preprocessing task, it is important to normalize and rescale 
(linear transformation) the data before it is used as input to the network. Each input 
variable should have a zero mean and a unit standard deviation over the 
transformed training set. Because of this, the weights can be initialized randomly. 

For ANNs there are way more preprocessing-tasks to consider, compared to CNNs. 
Another example (other than mentioned above) is missing value, which means that 
an input variable is missing its input data. There exist different techniques to handle 
this issue (some better than the other), e.g. to express these variables in terms of 
regression over the other variables using the available data, and then use the 
regression-function to fill in the missing values. 

However, these issues are not discussed regarding CNNs (in the same way as for 
ANNs). For CNNs there are two main preprocessing tasks: 

x Normalization 

x Augmentation 

The main reason why this is the case is that the CNN itself perform a feature 
extraction, which will be described further on. 

6.1 Normalization 
The pixel values often lie in the range [0,255], and feeding these values into the 
network can cause the neuron to saturate (it basically stops learning). Therefore, 
the learning will be really slow. Some preprocessing techniques are: 

x Mean/Median image subtraction 

x Per-channel normalization (the method mentioned above, with zero mean 
and unit standard deviation) 

x Per-channel mean subtraction 

x Whitening (turn the distribution into a normal distribution) 

x Dimensionality reduction (e.g. PCA, but this is not that common in deep 
learning) 

The rule that is important to keep in mind is, always use the simplest method (the 
easier, the more effective). 

6.2 Augmentation 
Overfitting is when the network learns the training data too well, and doesn’t get 
generalized. To prevent the network from overfitting, a great way is to create 
artificial data. This is often done by simply mirroring, rotating, etc. the input image. 
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6.3 Segmentation 
All the input images need to be of the same size, which can be achieved by cropping 
or padding each image if they might be of different sizes. 

In fully convolutional networks the ground truth, or the label, for each input image 
will be a binary mask in two-class classification problems. These binary masks 
normally contain zeros as background and ones as foreground. They will have the 
same size as the output from the network. 

6.4 StemNet 
The different time-laps sequences contain different sizes of the images. Therefore, 
the images have been resized to 1024x1024. Either the images have been cropped 
or padded. 

The images are frames from time-lapse sequences from a microscope. 
Unfortunately, there are usually features like stationary debris, a microwell or 
regions of non-uniform illumination in the background which interfere with the 
segmentation [2]. Fortunately, one can perform a background subtraction to 
remove most of these features. This is done by computing the background image 
and subtract it from all the images in a sequence (See Figure 10). Each frame in a 
sequence has been preprocessed by removing the time-axis median of the space-
time volume spanned by the image data, for each pixel in a sequence from each 
frame. If a voxel with spatial coordinate (𝑥, 𝑦) and at time 𝑡 is written as 𝐼(𝑥, 𝑦, 𝑡), 
the background pixels (of that time-lapse sequence) are given by: 

 

𝐼𝑏𝑔(𝑥, 𝑦, 𝑡) = median
𝑡𝜖 {1,…,𝑇}

𝐼(𝑥, 𝑦, 𝑡) (3) 

 

 
Figure 10 The left image (1114x1040) is an original frame from a time-lapse sequence of frames from 
the microscope, and the right image (1024x1024) is the same frame after it has been preprocessed. 

Each frame has a corresponding binary segmentation mask that is used as the truth 
for where there are stem cells (if any) in the frame. These segmentation masks are 
also of size 1024x1024. All the black pixels correspond to background and all the 
white pixels corresponds to foreground and stem cells. 
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7 Learning 
 

A neural network learns by updating/changing its weights and biases. That is an 
iterative process which takes a lot of time and needs computational resources. In 
general, the network learns by making a forward pass of the input, calculating the 
error of the prediction, and then passing backward the error in order to change the 
weights and biases after how wrong the prediction was. The method of the 
backward pass is called backpropagation, since the errors are propagated back 
through the network. 

7.1 Forward Pass 
During the forward pass, the input is sent through the network, where each neuron, 
in each layer, either activates (send an output) or doesn’t (no output). This will lead 
to different outputs of the whole network, depending on the values of the weights 
and biases. So for a specific input and specific weights and biases, the network gives 
an output that is compared with the truth, i.e. the correct classification (for 
example) for that input. 

7.2 Cost Function 
The error of the prediction of the network, which is calculated by the cost function 
(also known as the objective function), is also known as the cost or the loss. This can 
be calculated in different ways, i.e. there are several different cost functions and 
therefore the way of calculating the error is case dependent. The best known cost 
functions are: 

x Quadratic cost [13] 

x Cross-entropy cost [13] 

x Dice coefficient [27] 

x Exponential cost [28] 

x Hellinger distance [29] 

x Kullback-Leibler divergence [30] 

x Generalized Kullback-Leibler divergence [31] 

x Itakura-Saito distance [32] 

The most common/used cost functions are the quadratic cost and the cross-entropy 
cost. These both cost functions has the properties one wants from a cost function 
[13]: 

x It should be positive 

x Goes towards zero when the neurons get better at computing the desired 
output 

But the cross-entropy cost function also has a property which makes it better than 
the quadratic cost in most cases, which is that it avoids the problem of slow 
learning, which can be common with the quadratic cost function. 



22(64) 
 

7.2.1 Quadratic Cost 
The quadratic cost is often mathematically more tractable than other cost functions because of the 
properties of variances and that it is symmetric. I.e. an error above the target causes the same cost, 
or loss, as an error of the same magnitude below the target. The quadratic cost is defined as: 

 

𝐶 = 1
𝑛
∑ 𝐶𝑥𝑥  , (3) 

 

where 𝐶𝑥 is the cost for each input., e.g. if the cost function is the quadratic cost: 

 

𝐶𝑥 =
||𝑦𝑡𝑟𝑢𝑡ℎ−𝑦𝑝𝑟𝑒𝑑||2

2
 . (4) 

 

7.2.2 Cross-Entropy Cost 
The cross-entropy considers two probability distribution, which are the true probability (the true 
label) and the given distribution (the prediction). The cross-entropy gives a measure of similarity 
between these two probability distributions. The cross-entropy is defined as: 

 

𝐶 = − 1
𝑛
∑ 𝑦𝑡𝑟𝑢𝑡ℎ ln 𝑦𝑝𝑟𝑒𝑑𝑥 + (1 − 𝑦𝑡𝑟𝑢𝑡ℎ) ln(1 − 𝑦𝑝𝑟𝑒𝑑) . (5) 

 

In tasks of segmentation, dice coefficient can come in handy to use as a cost 
function. 

7.2.3 Dice Coefficient 
The dice coefficient [27] is the intersection divided by the union of 𝑦𝑡𝑟𝑢𝑡ℎ and 𝑦𝑝𝑟𝑒𝑑  
multiplied by a factor of two, i.e. calculated as: 
 
𝐷𝐶 = 2|𝑦𝑝𝑟𝑒𝑑∩𝑦𝑡𝑟𝑢𝑡ℎ|

|𝑦𝑝𝑟𝑒𝑑|+|𝑦𝑡𝑟𝑢𝑡ℎ|
 . (6) 

 
Then the final cost, or loss, is calculated as: 
 
𝐶𝑜𝑠𝑡 = 1 − 𝐷𝐶 . (7) 
 
7.3 Softmax 
Softmax is not a necessary operation. To apply a softmax on the output means that 
the output will be a probability distribution where each output is a positive number 
between 0 and 1 and all output sums up to 1. The softmax equation is the following 
[13]: 
 

𝑎𝑗𝐿 =
𝑒𝑧𝑗

𝐿

∑ 𝑒𝑧𝑘
𝐿

𝑘
 , (8) 
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where 𝑗 corresponds to the 𝑗th output neuron of the network (output layer 𝐿) and 
the denominator is the sum over all output neurons. 
 
Each output from a softmax will have a probability of belonging to one of the 
classes in the classification problem. 
 
7.4 Optimizer 
The main goal, in order to optimize the performance of the network, is to minimize 
the cost, or loss, from the cost function. The best known optimizers are: 

x Gradient descent [13] 

x SGD [13] 

x ADAM [33] 

x Momentum [13] 

x RMSprop [34] 

x AdaGrad [35] 

x Ftrl Proximal [36] 

x AdaDelta [37] 

x ProximalAdaGrad [38] 

The gradient descent algorithm is the most common/used one (considering its 
variants like SGD, Momentum etc.) and it finds a minima by first calculate the 
gradient of the error function, then move in the opposite direction of the gradient, 
to end up at a minima. It is here where the learning rate comes in. The learning rate 
is a factor multiplied to the gradient and decides how large steps to take when 
locating the minima. Usually the learning rate is small. If the cost function is called 
𝐶, then the steps of the gradient descent algorithm can be written as [13]: 

 

∆𝐶 ≈ −𝜂∇𝐶 ∙ ∇𝐶 = −𝜂||∇C||2 , (9) 

 

where 𝜂 is the learning rate and ∇𝐶 is the gradient of the cost function. ∆𝐶 is the 
change which should be negative and always decrease since we want to find a 
minima. This can be rewritten in component format, to see how the weights (𝑤𝑘) 
and biases (𝑏𝑙) updates/changes during training: 

 

𝑤𝑘 → 𝑤𝑘
′ = 𝑤𝑘 − 𝜂 𝜕𝐶

𝜕𝑤𝑘
 (10) 

𝑏𝑙 → 𝑏𝑙′ = 𝑏𝑙 − 𝜂 𝜕𝐶
𝜕𝑏𝑙

 . (11) 

 
The most common cost function is called Stochastic Gradient Descent (SGD), but in 
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CNNs two other cost functions are becoming more common, ADAM and 
Momentum, which are faster variants of SGD. 

7.4.1 SGD 
When calculating the gradient of the cost function, one has to calculate the gradient 
for each training input separately, i.e. [13]: 

∇𝐶 = 1
𝑛
∑ ∇𝐶𝑥𝑥  . (12) 

This can take a long time when there are a lot of training inputs. Therefore, SGD is 
used to speed up the learning. 

By using SGD we estimate the gradient by computing the gradient of a single input 
for a small sample of randomly chosen inputs, instead of using all the inputs. Then 
by averaging over these samples, a good estimate of the true gradient can be 
calculated. So if the random samples are 𝑋1, 𝑋2,… , 𝑋𝑚 and: 

 

1
𝑛
∑ ∇𝐶𝑥𝑥 ≈ 1

𝑚
∑ ∇𝐶𝑋𝑗
𝑚
𝑗=1  , (13) 

 

then by using eq.12 and eq.13, the gradient can approximately be approximated as: 

 

∇𝐶 ≈ 1
𝑚
∑ ∇𝐶𝑋𝑗
𝑚
𝑗=1  . (14) 

 

This can also be expressed in the components that we want to train, i.e. the weights 
and biases: 

 

𝑤𝑘 → 𝑤𝑘
′ = 𝑤𝑘 −

𝜂
𝑚
∑

𝜕𝐶𝑋𝑗
𝜕𝑤𝑘

𝑗  (15) 

𝑏𝑙 → 𝑏𝑙′ = 𝑏𝑙 −
𝜂
𝑚
∑

𝜕𝐶𝑋𝑗
𝜕𝑏𝑙𝑗  . (16) 

 

This update is iterated until an enough amount of mini-batches (samples) has been 
used, which is until all the training data has been used, which is also known as an 
epoch. 

7.4.2 ADAM (Adaptive Moment Estimation) 
This method computes adaptive learning rates for each parameter [33]. 
Initialize initial 1st moment vector, 2nd moment vector and timestep as: 

 

𝑚0 ← 0 (17) 

𝑣0 ← 0 (18) 
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𝑡 ← 0 . (19) 

 

If the cost function is written as 𝑓(𝜃), then the updates are: 

 

𝑡 ← 𝑡 + 1 (20) 

𝑔𝑡 ← ∇𝜃𝑓𝑡(𝜃𝑡−1) (21) 

𝑙𝑟𝑡 ← 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ∙
√1−𝛽2

𝑡

1−𝛽1
𝑡  (22) 

𝑚𝑡 ← 𝛽1 ∙ 𝑚𝑡−1 + (1 − 𝛽1) ∙ 𝑔𝑡 (23) 

𝑣𝑡 ← 𝛽2 ∙ 𝑣𝑡−1 + (1 − 𝛽2) ∙ 𝑔𝑡
2 (24) 

�̂�𝑡 ← 𝑚𝑡
1−𝛽1

𝑡 (25) 

𝑣𝑡 ← 𝑣𝑡
1−𝛽2

𝑡 (26) 

𝜃𝑡 ← 𝜃𝑡−1 − 𝛼 ∙ �̂�𝑡
�̂�𝑡+𝜖

 , (27) 

 

where 𝑚𝑡 and 𝑣𝑡 are estimates of the first moment and the second moment of the 
gradients, i.e. the mean and the non-centered variance respectively. �̂�𝑡 and 𝑣𝑡 are 
the bias-corrected first and second moment estimate, respectively. 

The algorithm updates exponential moving averages of the gradient and the squared 
gradient. The hyperparameters 𝛽1 and 𝛽2 controls the exponential decay rates of 
the moving averages, and 𝑔𝑡 is the gradient of the cost function at timestep 𝑡. The 
resulting parameter/output is 𝜃𝑡 and 𝛼 is the stepsize. 𝜖 is a small value. 

7.4.3 Momentum 
This technique is based on gradient descent or SGD, it is just faster and more stable 
(basically) [13]. What has been done in this method is to introduce a friction 
coefficient, called momentum coefficient. This has nothing to do with the 
momentum from physics. We introduce velocity variables, one for each weight or 
bias. This makes the learning fast, i.e. we get to the minima faster. The momentum 
coefficient is necessary to not overshoot and ”pass” the minima. Consider 𝑤 as both 
the weights and biases and 𝑣 as the velocity variable, then [13]: 

 

𝑣 → 𝑣′ = 𝜇𝑣 − 𝜂∇𝐶 (28) 

𝑤 → 𝑤′ = 𝑤 + 𝑣′ , (29) 

 

where 𝜇 is the momentum coefficient. 
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7.4.4 General 
If the error is small, we don’t want to change the weights and biases too much, but 
if the error is large, we want to change the weights and biases more drastically. 
Therefore, the derivative of the cost function (error function) with respect to the 
weights and biases, is what is used in the backpropagation. 

7.5 Backpropagation 
To be able to use the methods mentioned above, one has to be able to calculate the 
gradient of the cost. This is done by an algorithm called backpropagation [13]. 

The backpropagation gives an expression of the derivative of the cost function 𝐶 
with respect to the weights and biases. From that we can get how fast the cost 
changes depending on the changes of the weights and biases in the network. 

For a cost function to be able to be used for backpropagation, it needs to fulfill two 
criteria: 

x it can be written as an average over cost functions for individual training 
examples 

x it can be written as a function of the outputs from the network 

We calculate the partial derivatives 𝜕𝐶
𝜕𝑤𝑗𝑘

𝑙  and 𝜕𝐶
𝜕𝑏𝑗

𝑙 where 𝑤 is the weight from neuron 

𝑘 in layer (𝑙 − 1) to neuron 𝑗 in layer 𝑙 and 𝑏 is the bias of the 𝑗 neuron in layer 𝑙. 
Then we relate 𝛿𝑗

𝑙 to each partial derivative, which is the error in the 𝑗 neuron in 
layer 𝑙. 

What is wanted is for the neural network to perform with an accuracy as high as 
possible. To increase its accuracy, one has to minimize the error. The error comes 
from that the output from an activation function is different from what is optimal. 
E.g. from activation function output 𝑎 we want the output 𝜎(𝑧𝑗

𝑙), where:  

 

𝑧𝑗
𝑙 = ∑ 𝑤𝑗𝑘

𝑙 𝑎𝑘
𝑙−1 + 𝑏𝑗

𝑙
𝑘  .  (30) 

 

But what we actually get is 𝜎(𝑧𝑗
𝑙 + ∆𝑧𝑗

𝑙). When this propagates through the 

network, the final cost will be 𝜕𝐶
𝜕𝑧𝑗

𝑙 ∆𝑧𝑗
𝑙. Therefore, we choose ∆𝑧𝑗

𝑙 so that we minimize 

the final cost as much as possible. E.g. ∆𝑧𝑗
𝑙 can be set to the opposite sign of  𝜕𝐶

𝜕𝑧𝑗
𝑙, to 

make sure that 𝜕𝐶
𝜕𝑧𝑗

𝑙 ∆𝑧𝑗
𝑙 is small. This tells us that 𝜕𝐶

𝜕𝑧𝑗
𝑙 can be seen as the error in each 

neuron, i.e.: 

 

𝛿𝑗
𝑙 = 𝜕𝐶

𝜕𝑧𝑗
𝑙 . (31) 

 

The backpropagation algorithm is based on four fundamental equations: 
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𝛿𝑗
𝐿 = 𝜕𝐶

𝜕𝑎𝑗
𝐿 𝜎′(𝑧𝑗

𝐿) , (32) 

or in matrix-form: 

𝛿𝐿 = ∇𝑎𝐶⨀𝜎′(𝑧𝐿) (33) 

𝛿𝑙 = ((𝑤𝑙+1)𝑇𝛿𝑙+1)⨀𝜎′(𝑧𝑙) (34) 

𝜕𝐶
𝜕𝑏𝑗

𝑙 = 𝛿𝑗
𝑙 (35) 

𝜕𝐶
𝜕𝑤𝑗𝑘

𝑙 = 𝑎𝑘
𝑙−1𝛿𝑗

𝑙 , (36) 

 

where ⨀ is the Hadamard product, also known as elementwise multiplication and 𝜎 
is the activation function (usually sigmoid or ReLU, but here a general activation 
function). 

Eq.32 is the error in the output layer 𝐿, eq.34 is the error expressed in terms of the 
error in the next layer (𝑙 + 1), eq.35 is the rate of change of the cost with respect to 
the bias, eq.36 is the rate of change of the cost with respect to the weight. 

If 𝑎𝑘
𝑙−1 in eq.36 is small, it is said that the weight learns slowly. Depending on the 

activation function, this is a consequence of that the neuron has saturated (sigmoid 
as activation function) or that the neuron doesn’t activate because of a too large 
gradient (ReLU as activation function, see Figure 11 and eq.37). If the activation 
function is a sigmoid (eq.2) this means that its output is close to 0 or 1. 

 

𝑓(𝑥) = max (0, 𝑥) (37) 

 
Figure 11 The ReLU function.The activation function only gives an output if the input is greater than 
zero. This introduces nonlinearity to the network. 

All four equations eq.32-eq.36 are consequences of the chain rule: 
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𝛿𝑗𝐿 = ∑ 𝜕𝐶
𝜕𝑎𝑘

𝐿𝑘
𝜕𝑎𝑘

𝐿

𝜕𝑧𝑗
𝐿  . (38) 

 

But the output from the activation function 𝑎𝑘𝐿  of the 𝑘th neuron will only depend 
on the weighted input 𝑧𝑗𝐿 when 𝑘 = 𝑗, and can therefore be rewritten as:   

 

𝛿𝑗𝐿 =
𝜕𝐶
𝜕𝑎𝑗

𝐿
𝜕𝑎𝑗

𝐿

𝜕𝑧𝑗
𝐿  , (39) 

 

which is the same as: 

 

𝛿𝑗𝐿 =
𝜕𝐶
𝜕𝑎𝑗

𝐿 𝜎′(𝑧𝑗𝐿) . (40) 

 

This is eq.32 in component form. To prove eq.34 one can again apply the chain rule: 

 

𝛿𝑗𝑙 =
𝜕𝐶
𝜕𝑧𝑗

𝑙 = ∑ 𝜕𝐶
𝜕𝑧𝑘

𝑙+1𝑘
𝜕𝑧𝑘

𝑙+1

𝜕𝑧𝑗
𝑙 = ∑ 𝜕𝑧𝑘

𝑙+1

𝜕𝑧𝑗
𝑙𝑘 𝛿𝑘𝑙+1 (41) 

𝑧𝑘𝑙+1 = ∑ 𝑤𝑘𝑗
𝑙+1

𝑗 𝑎𝑗𝑙 + 𝑏𝑘𝑙+1 = ∑ 𝑤𝑘𝑗
𝑙+1

𝑗 𝜎(𝑧𝑗𝑙) + 𝑏𝑘𝑙+1 (42) 

 

and by differentiating: 

 

𝜕𝑧𝑘
𝑙+1

𝜕𝑧𝑗
𝑙 = 𝑤𝑘𝑗

𝑙+1𝜎′(𝑧𝑗𝑙) , (43) 

 

which implemented in eq.41 gives us eq.34 in component form: 

 

𝛿𝑗𝑙 = ∑ 𝑤𝑘𝑗
𝑙+1

𝑘 𝛿𝑘𝑙+1𝜎′(𝑧𝑗𝑙) . (44) 

 

For eq.36 we can use the chain rule as: 

 

𝜕𝐶
𝜕𝑤𝑗𝑘

𝑙 = 𝜕𝐶
𝜕𝑧𝑗

𝑙
𝜕𝑧𝑗

𝑙

𝜕𝑤𝑗𝑘
𝑙  , (45) 
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where the first factor has already been proven to be the error and the second 
factor: 

 

𝜕𝑧𝑗
𝑙

𝜕𝑤𝑗𝑘
𝑙 = 𝜕

𝜕𝑤𝑗𝑘
𝑙 ∑ 𝑤𝑗𝑘𝑙𝑗 𝑎𝑗𝑙−1 + 𝑏𝑘𝑙+1 = 𝑎𝑙−1 . (46) 

 

By implementing eq.46 in eq.45: 

 

𝜕𝐶
𝜕𝑤𝑗𝑘

𝑙 = 𝜕𝐶
𝜕𝑧𝑗

𝑙 𝑎𝑙−1 = 𝑎𝑙−1𝛿𝑗𝑙 . (47) 

 

For eq.35 the first derivative factor is the same as eq.45 and the second derivative 
factor is: 

 

𝜕𝑧𝑗
𝑙

𝜕𝑏𝑗
𝑙 =

𝜕
𝜕𝑏𝑗

𝑙 ∑ 𝑤𝑗𝑘𝑙𝑗 𝑎𝑗𝑙−1 + 𝑏𝑘𝑙+1 = 1 . (48) 

 

By implementing eq.48, the final result is: 

 

𝜕𝐶
𝜕𝑏𝑗

𝑙 = 𝛿𝑗𝑙 . (49) 

 

8 Overfitting 
 

An issue with training neural networks, that appears quite often, is overfitting. That 
means that the network learns the training data too well and isn’t general at all. I.e. 
if an overfitted network should e.g. classify an image that has not been included in 
the training data, the network simply cannot get it correct. 

A sign of overfitting is, when looking at the loss or accuracy of the training data and 
the validation data, if the two graphs starts to go different ways. More specific, if 
the validation accuracy decreases while the training accuracy increases or if the 
validation loss increases while the training loss decreases (see Figure 12). 
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Figure 12 Signs of overfitting by looking at the accuracy and loss of the training and validation. 

There are different techniques to prevent overfitting (one mentioned earlier), either 
used separately or combined: 

x dropout 

x data augmentation 

x regularization term 

x batch normalization 

8.1 Dropout 
Dropout [39] is a way of reducing overfitting in a network by in each 
forward/backward pass, reduce a pre-decided percentage of the hidden neurons, 
i.e. temporarily delete those neurons. Then in the next forward/backward pass the 
network is restored and other hidden neurons (the same amount as earlier) are 
temporarily deleted (see Figure 13). This procedure can be seen as an average 
scheme after doing this for the whole training. 

 
Figure 13 How dropout works, by cancelling out some hidden neurons. 
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Then when running the network without dropout (which is done on the validation 
and/or test dataset), the weights coming out from the hidden neurons have to be 
modified (scaled) since there are much more active neurons than during training. 

8.2 Data Augmentation 
A cause of overfitting can be because of a too small training dataset. If this is the 
case, then data augmentation can solve the issue of overfitting. This can be done by 
either collecting more data (usually very time consuming) or by creating artificial 
data. 

To create artificial data doesn’t have to be a tricky thing. It might just mean to rotate 
and deform (if images), or change in some way the already existing data. 

8.3 Regularization Term 
To help the network to learn more general results and also to increase its 
classification accuracy, one can introduce a regularization term to the cost function 
by simply adding it to the already existing cost function (𝐶0): 

 

𝐶 = 𝐶0 + 𝑅𝑒𝑔 , (50) 

 

where 𝑅𝑒𝑔 is the regularization term. There exist different regularization terms, but 
the two most common are 𝐿1 regularization:  

 

𝑅𝑒𝑔 = 𝜆
𝑁
∑ |𝑤|𝑤  (51) 

 

and 𝐿2 regularization: 

 

𝑅𝑒𝑔 = 𝜆
2𝑁
∑ 𝑤2
𝑤  , (52) 

 

where 𝑁 is the size of the training data set. In the backpropagation algorithm this 
will only affect the weight update, by introducing a weight decay, while not 
affecting the bias update at all (regularization is used to keep the weights small, so 
that the network doesn’t overfit. Using a regularization on the bias wouldn’t make 
sense, since it would keep the bias of a layer closer to the origin, even though the 
training data might be strongly biased. That would just limit the learning 
expressiveness of the network.): 

 

𝜕𝐶
𝜕𝑤

= 𝜕𝐶0
𝜕𝑤

+ 𝜆
𝑁
𝑤 (53) 

𝜕𝐶
𝜕𝑏

= 𝜕𝐶0
𝜕𝑏

 . (54) 
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It is called weight decay since the new learning rule for weights become (the 
learning rule for the bias remains the same): 

 

𝑤 → 𝑤 − 𝜂 𝜕𝐶0
𝜕𝑤

− 𝜂 𝜆
𝑁
𝑤 = (1 − 𝜂 𝜆

𝑁
)𝑤 − 𝜂 𝜕𝐶0

𝜕𝑤
 . (55) 

 

The regularization term is preferred since it gives smaller weights and thus provides 
a simpler and more powerful explanation for the data. 

8.4 Batch Normalization 
Batch normalization [40] is something that performs a normalization for each layer 
in the network. It is applied before the activation function. The idea is to handle the 
internal covariate shift, since there might be a difference in the distributions of the 
input data between the layers in the network. 

In deep networks the input to each layer depends in all the previous parameters in 
the network. Therefore, a small change of the weights can be the cause of a larger 
error in the end. Without batch normalization this is prevented by using small 
learning rates and being careful with the weight initializations. 

In a convolutional neural network, the normalization is performed as the following: 

 

𝑦𝑖𝑗𝑐𝑏 = 𝑤𝑘
𝑥𝑖𝑗𝑐𝑏−𝜇𝑐

√𝜎𝑐2−𝜖
+ 𝑏𝑐 (56) 

𝜇𝑐 =
1

𝐻𝑊𝐵
∑ ∑ ∑ 𝑥𝑖𝑗𝑐𝑏𝐵

𝑏=1
𝑊
𝑗=1

𝐻
𝑖=1  (57) 

𝜎𝑐2 =
1

𝐻𝑊𝐵
∑ ∑ ∑ (𝑥𝑖𝑗𝑐𝑏 − 𝜇𝑐)2𝐵

𝑏=1
𝑊
𝑗=1

𝐻
𝑖=1  , (58) 

 

where the data batch has the dimension 𝐻𝑥𝑊𝑥𝐶𝑥𝐵 and 𝐻 is the height of the 
features, 𝑊 is the width of the features, 𝐶 is the number of channels and 𝐵 is the 
batch size. 𝜖 is to prevent numerical issues. 

As a consequence of batch normalization, dropout is often not necessary to use, 
since it also has regularization properties. 

 

9 The networks 
 

Two different networks are being considered. A 12 convolutional layer (from size 
1024x1024 to size 32x32, back to size 1024x1024) network is trained using temporal 
information (Network5) and no temporal information (Network1) and then analyzed. 
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The comparison should answer if the use of temporal information increases the 
performance of the fully convolutional network or not. 

 
Figure 14 The network architecture. For temporal training a 5 channel input is used, while a 1 channel 
input is used otherwise. 

The fully convolutional network consists of convolutional layers, max-pooling layers, 
ReLU activations, deconvolutional (transposed convolutions with stride 2) layers 
where the input is the output from the lower resolution convolution from one step 
earlier concatenated with the corresponding convolutional output from the 
downsampling part. The output is a convolutional layer with patch-size 1x1 to do a 
pixel wise classification, for comparison with the one hot-encoded segmentation 
mask (it could also have been done with only a one layer output, by doing some 
modification on the cost function). The output is run through a softmax before 
calculating the cost (or loss).  

The fully convolutional network will be trained using temporal information to see if 
this approach can achieve better results than without the temporal information, i.e. 
the fully convolutional network will also be trained without the temporal 
information. Network5 and Network1 will have the same architecture, but the input 
will be of 5 channels (temporal information) for Network5 and of 1 channel 
(grayscale) for Network1. In more detail, for every input frame of Network5, frames 
in the sequence of the time-lapse that are before (two frames) and after (two 
frames) the input frame will also be used as input with that input frame. If the input 
frame is denoted as 𝑋𝑖,𝑗 and the output label for that frame is denoted as 𝑌𝑖,𝑗, 
where 𝑖 is the sequence number and 𝑗 is the frame number, then the other frames 
sent into the network for training will be  𝑋𝑖,𝑗−2, 𝑋𝑖,𝑗−1, 𝑋𝑖,𝑗+1 and 𝑋𝑖,𝑗+2 even 
though the label used to compare the output with is only 𝑌𝑖,𝑗. See Figure 14 for the 
network architecture. 
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10 Measurements 
 

It is important to measure the results from the network properly, so that the 
conclusions of each parameter setting and each architecture gets evaluated in a way 
that makes it easy to see if something is bad or good. One way to measure this is to 
calculate the loss and the accuracy, both for the training set and for the validation 
set. Then by comparing the two graphs conclusions can be made, e.g. if the network 
is overfitting or underfitting (the opposite of overfitting, often occurs if the model is 
too simple). The standard way of calculating the accuracy is in the following way 
[41]: 

 

𝑇𝑃 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒  

𝑇𝑁 = 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒  

𝐹𝑃 = 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒  

𝐹𝑁 = 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

   (59) 

 

The calculation of the loss depends on which cost function that is being used. A 
commonly used cost function is the cross-entropy. Though, in the case of image 
segmentation and the usage of a binary segmentation mask, it might be necessary 
to use a weighted cost function. This is because if the object to be classified just are 
very few pixels of the mask and the rest are zeros. Then the accuracy would be very 
high, even if it didn’t find any object. A weighted cost function, if the cross-entropy 
cost function is used, is (if the ones are the wanted class): 

 
𝐶 = − 1

𝑛
∑ 𝑤𝑐𝑙𝑎𝑠𝑠𝑦𝑡𝑟𝑢𝑡ℎ ln 𝑦𝑝𝑟𝑒𝑑𝑥 + (1 − 𝑦𝑡𝑟𝑢𝑡ℎ) ln(1 − 𝑦𝑝𝑟𝑒𝑑) , (60) 

 

where 𝑤𝑐𝑙𝑎𝑠𝑠 > 1, so that the calculation of the error on the wanted class is more 
sensitive (i.e. a misclassification should cost more for the wanted class than the 
other class). 

Other important measurements are precision and recall, F1 score, and also the error 
rate: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

   (61) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

 (62) 

𝐹1 = 2∙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

= 2𝑇𝑃
2𝑇𝑃+𝐹𝑃+𝐹𝑁

 (63) 
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The error rate shows how many pixels correctly classified as a percentage. 

In the end, what is important to find out is for every input image, how many pixels 
does the network classify as stem cell and not a stem cell. 

 

11 Imbalanced Classes 
 

An issue within the area of machine learning, is that the dataset used for training 
can be unbalanced. Consider a classification of two classes (the same applies for a 
multi-class problem) and that one of the classes is overrepresented compared to 
the other class. Then there are imbalanced classes, and the dataset is unbalanced. 
The consequence of this is that if the algorithm just classifies everything as the 
overrepresented class, the accuracy will be very high, even though the algorithm 
has failed its task. 

There are several approaches to this issue, and which one to choose is dependent 
on the task. Some techniques to approach this problem are [42], [43]: 

x Add weights, so that the overrepresented class gets a low weight and the 
underrepresented class gets a high weight (see eq.60) 

x Resample the dataset 

x Increase the size of the dataset 

x Use other metrics than accuracy 

x Generate synthetic samples 

x Use penalized models 

The following descriptions considers the area of image segmentation, two-class 
classification and deep learning, but the principle is the same for machine learning-
algorithms in general. 

11.1 Add Weights 
When having imbalanced classes, it is important to take this into account when 
building the network. One way to do this is to add weights in the loss function. If 
not, the network will think it does fine/well, when it e.g. is actually missing every 
pixel of one class. In practice this means that all the pixels classified as the 
overrepresented class gets multiplied with a lower weight than what the pixels of 
the underrepresented class gets multiplied with. How to decide the weights is case 
dependent. 

One way to decide the weights is to take the pixel frequency median of the whole 
dataset divided through the pixel frequency of the class [12], [44], for each class. 
This gives a smaller weight for the larger class and a greater weight for the smaller 
class. Another way to perform class balancing is to multiply a weight only to the 
underrepresented class in the loss function, which is the total amount of pixels of 
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the larger class divided by the total amount of pixels of the smaller class, over the 
whole training data. Though in some cases, it might be the best to choose an 
arbitrary weight and by trial-and-error iterate the most proper weight. 

11.2 Resample the Dataset 
One way to tackle the issue of imbalanced classes is to resample the dataset. This 
means that we remove the images that are the most overrepresented of one class. 
This decreases the size of the dataset, but it might help. 

11.3 Augmented Dataset 
To augment the dataset, if possible, is a way to make sure that either we increase 
the dataset of images that are more equally represented between the classes, or 
just that we collect more data so that we don’t decrease the size of the dataset too 
much if we resample the dataset as mentioned above. 

11.4 Other Metrics 
The issue of class imbalance often leads to the accuracy paradox [45]. Then it can be 
good to use other metrics, like: 

x Confusion Matrix: Shows the correct predictions and the incorrect 
predictions made 

x Precision: Shows the classifiers exactness 

x Recall: Shows the classifiers completeness 

x F1-Score: Shows a weighted average of precision and recall 

x Kappa: Shows the accuracy normalized by the imbalance of the classes in 
the dataset 

x ROC: Shows the accuracy divided into sensitivity and specificity 

11.5 Synthetic Samples 
It can be possible to create more samples of the underrepresented class. In the case 
of stem cells, this would mean to add fake stem cells in the images, that make the 
balance between the classes more equal. 

11.6 Penalized Models 
Using this approach means that one adds a penalizing term to the cost when the 
network misclassifies the minority class, so that the network learns that it is more 
important. 

 

12 Temporal Segmentation & Classification 
 

When using a neural network for the task of segmentation, one want that the 
output is the input image with a highlighted area of the object to be segmented. To 
train a neural network to perform this, it is necessary to use binary segmentation 
masks as labels (here with the same height and width as the input image), so that 
the network can backpropagate the pixel errors of each corresponding pixel of the 
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output/prediction. In this way the network will be trained to learn on a single pixel 
level. 

If one has access to sequential data, e.g. a time-lapse recording as in this case, it 
might be possible to use the temporal information to make the network better learn 
what is e.g. a stem cell and what is not. Since the stem cells (when looking at this 
case) are moving and everything else is static in the sequences, the network can 
potentially more easy understand what is a stem cell and what is not. 

 

13 Experiments 
 

13.1 Experimental Setup 
The two different networks, Network1 (1 channel input) and Network5 (5 channel 
input) were trained with the same setup of hyperparameters and then on a slightly 
different setup of hyperparameters for Network5, to compare the difference. A 
momentum optimizer was used to minimize the cross-entropy cost function, which 
was weighted because of the class imbalance. Dropout was used to prevent 
overfitting, i.e. no regularization term was added to the cost function and no batch 
normalization was used since the batch size was one image. The networks were 
trained on a dataset of 24 997 images of size 1024x1024, where all images had been 
preprocessed by removing the sequential background and cropped or padded to 
the size 1024x1024. Each input image had a corresponding segmentation mask as 
label/truth. 19 998 images were used for training, 4 998 images were used for 
validation and 1 image was used for test/prediction. The (most relevant) 
experimental hyperparameter settings can be seen in Table 1, which was for 
Network1 and Network5, and in Table 2, which was only for Network5. The networks 
were trained until the loss converged or that they started to overfit. 

 

Hyperparameter Value 
Dropout 0.25 

Learning rate 0.15 (with decay) 
Decay rate 0.95 

Momentum 0.2 
Max-pooling 2x2, stride 2 

Deconvolution 2x2, stride 2 
Convolution 5x5, stride 1 

Cost function weight 2 for the unrepresented class (stem cells) 
Table 1 Hyperparameters for Network1 and Network5. 
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Hyperparameter Value 
Dropout 0.25 

Learning rate 0.1 (with decay) 
Decay rate 0.95 

Momentum 0.2 
Max-pooling 2x2, stride 2 

Deconvolution 2x2, stride 2 
Convolution 5x5, stride 1 

Cost function weight 2 for the unrepresented class (stem cells) 
Table 2 Hyperparameters for a second run of Network5. 

13.2 System Requirements 
The programming language used here is python, where the library/API TensorFlow 
[9], developed by Google, has been used. This saves time to not having to build 
every small function from scratch, but also gives more free hands to create 
something unique compared to the usage of a high level-API like Keras [46]. 

The different networks are trained on a 6 core CPU and a NVidia P100 Tesla GPU. 

 

14 Results 
 

The results of the best performing model of the different networks and 
hyperparameter setups can be seen in Table 3. The training and validation process 
of the different networks with hyperparameter setup as in Table 1 can be seen in 
Figure 15-Figure 21. 

 

Measure Network1 (Table 1 settings) Network5 (Table 1 settings)  Network5 (Table 2 settings) 
Error rate 0.033 0.054 0.041 
F1 score 0.83 0.70 0.82 

False white 0.000157 0.000134 0.000227 
WP accuracy 0.83 0.68 0.84 

Table 3 The results of the different setups of Network1 and Network5. The measure False white means how many pixels that 
were wrongly classified as a stem cell. The measure WP (White Pixel) accuracy means how many pixels that were correctly 

classified as a stem cell. 
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!

Figure 15 The plots shows how the different networks change their performance during training. The plots correspond to 
Network1 and Network5, respectively.!

!
Figure 16 The plots shows how the different networks change their performance during training. The plots correspond to 
Network1 and Network5, respectively.!

!
Figure 17 The plots shows how the different networks gets better at sorting out what is a stem cell and what is not during 
training. The plots correspond to Network1 and Network5, respectively.!
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!
Figure 18 The plots shows how the different networks learns during training. The plots correspond to Network1 and 
Network5, respectively. In the plot to the right it is fluctuating and starts to overfit early. This is a sign of a too large learning 
rate.!

!
Figure 19 The plots shows how the different networks change their performance during training. The plots correspond to 
Network1 and Network5, respectively.!

! !
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!
Figure 20 The plots shows how the different networks increase their precision during training. The plots correspond to 
Network1 and Network5, respectively.!

!
Figure 21 The plots shows how the different networks change their performance during training. The plots correspond to 
Network1 and Network5, respectively.!

! !
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At each layer in the fully convolutional network, there are several feature maps. The 
number of feature maps, for each layer, is shown in Figure 14. In Figure 22 one can 
follow how the network is learning, by observing one (of many) feature map (as an 
example) for each convolutional layer.  

Figure 22 One feature map at each layer. The structure corresponds to the fully convolutional network 
seen in Figure 14. The input is a frame from the training data, in the beginning of training. 
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The results of the two different networks can be seen in Table 3, where the F1 score 
is applied to the two pixel classes, foreground (MuSCs) and background. 

Examples of the performance can be seen in Figure 23. 

 
Figure 23 The achieved result as a heat map. The left images is the input (1 channel), the images in the middle is the ground 
truth, i.e. the segmentation mask, and the right images is the prediction of the fully convolutional network. 

 

15 Discussion & Conclusion 
 

The results, as can be seen in Table 3, implies that Network1 and Network5 both 
perform well. Network1 is slightly sharper, though there are more changes in the 
hyperparameter settings that could/should be made for Network5 since it has more 
complexity in its training data. 

Network1 learns to find the correct MuSC pixels quite fast, but it takes longer to 
learn that other objects in the image aren’t MuSCs. Network5 is the opposite, it 
takes more time to find the correct MuSC pixels, but it learns to sort out the other 
objects in an image quite fast (low False white-measure quite fast, see Figure 17).  

As can be seen in Figure 18, both networks are stopped training when converging or 
overfitting. Network5 shows early overfitting and a lot of fluctuation that indicates 
on a too high learning rate. The steps of the weight and bias parameter updates are 
too large, hence the huge spike in the right plot in Figure 18. Network5 increased its 



44(64) 
 

performance when trained with a lower learning rate, but it still performs worse 
than Network1. 

To increase the performance of Network5, one could try to: 

x Make the network deeper, i.e. add more convolutional layers, since it has 
more complexity in its training data compared to Network1 

x Increase the number of images in the training data to make it more general 
and to avoid overfitting (this should also improve Network1) 

x Increase the weight of the cost function 

x Increase the dropout rate to avoid overfitting 

x Add a regularizer term to the cost function to avoid overfitting 

From Figure 15, 17 and 21, one can see that in the beginning both of the networks 
have a high accuracy on finding the MuSC pixels. Though, the networks also think 
that other features in the input frames are MuSCs. When it learns that not all the 
objects in the image are MuSCs, it is harder for the networks to be as accurate as 
before, but both of the networks still performs well. 

In Figure 22 one can follow the process of the whole fully convolutional network. 
From input size 1024x1024 to 32x32 and back to 1024x1024. Even though the exact 
position of the spatial information is discarded in the downsampling, it keeps the 
relative positions and therefore finds the exact position of the spatial information in 
the end. A lot thanks to passing over the information from the downsampling to the 
upsampling. 

The temporal approach in training would be interesting to use on data where it is 
very hard for the network to learn to find the wanted objects otherwise. In this 
case, the performance of Network1 is good and it can separate MuSCs from other 
features/objects in an image, as can be seen in the examples of its performance in 
Figure 23. This means that giving the network a short-term memory will not help 
the network here to perform better, since the way to improve Network1 is a matter 
of increasing accuracy of classifying the very most outer edge pixels of a MuSC, and 
not overall if it can, very roughly, segment something as a MuSC correctly or not. If 
that was the case, then the temporal approach would most probably increase the 
performance. In this case, Network1 performs well and it is unnecessary to make the 
network more complex. 
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18 Appendix 
18.1 Classes & Functions 
18.1.1 data_handler.py 

1. from __future__ import print_function, division, absolute_import, unicode_literals   
2.    
3. import numpy as np   
4. import tensorflow as tf   
5. from PIL import Image   
6. import glob   
7. import sys   
8. import random    
9. import os.path   
10. import re   
11.    
12. numbers = re.compile(r'(\d+)')   
13.    
14.    
15. def numericalSort(value):   
16.     parts = numbers.split(value)   
17.     parts[1::2] = map(int, parts[1::2])   
18.     return parts   
19.    
20. def read_data(search_path_frame, search_path_mask):   
21.     # Subract 127 from each frame. The size is 1024x1024   
22.     all_frames = sorted(glob.glob(search_path_frame), key=numericalSort) # The path names   
23.     all_masks = sorted(glob.glob(search_path_mask), key=numericalSort) # The path names   
24.     data_name = []   
25.     if len(all_frames) == len(all_masks):   
26.         for idx in range(len(all_frames)):   
27.             frame_name = all_frames[idx]   
28.             mask_name = all_masks[idx]   
29.             data_name.append((frame_name, mask_name))   
30.     else:   
31.         sys.exit("Different number of frames compared to number of masks")   
32.     return data_name   
33.    
34. def split_data(data_name, test_size, pred_size=None):   
35.     # test_size and pres_size a number between 0 and 1   
36.     #if (1 - test_size - pred_size) == 0 or (1 - test_size - pred_size) < 0 or (1 - test_size - pred_si

ze) > 1:   
37.     #    sys.exit("Wrong sizes of the data-splits")   
38.     data_len = len(data_name)   
39.     if pred_size is not None:   
40.         train_data_name = data_name[0:round((1 - test_size)*(data_len-1))]   
41.         test_data_name = data_name[round((1 - test_size )*(data_len-1)) + 1:-2]   
42.         pred_data_name = data_name[-1]   
43.         # shuffle the data   
44.         random.shuffle(train_data_name)   
45.         random.shuffle(test_data_name)   
46.         return train_data_name, test_data_name, pred_data_name   
47.     else:   
48.         train_data_name = data_name[0:round((1 - test_size)*data_len)]   
49.         test_data_name = data_name[round((1 - test_size)*data_len) + 1:-1]   
50.         # shuffle the data   
51.         random.shuffle(train_data_name)   
52.         random.shuffle(test_data_name)   
53.         return train_data_name, test_data_name   
54.    
55. def data_provider(data_name, batch_size, idx, epoch, channels, n_class, shuffle, pred):   
56.     # If idx == 0, shuffle data_name   
57.     if idx == 0 and epoch != 0 and shuffle == True:   
58.         random.shuffle(data_name)   
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59.     # Get the data and give the batch as output   
60.     if batch_size == 1:   
61.         if channels == 5:   
62.             if pred is True:               
63.                 frame = np.zeros((1024, 1024, 5), dtype=np.float32)   
64.                 frame[:,:,0] = np.array(Image.open(data_name[0]), np.float32) - 127   
65.                 frame[:,:,1] = np.array(Image.open(data_name[0]), np.float32) - 127   
66.                 frame[:,:,2] = np.array(Image.open(data_name[0]), np.float32) - 127   
67.                 frame[:,:,3] = np.array(Image.open(data_name[0]), np.float32) - 127   
68.                 frame[:,:,4] = np.array(Image.open(data_name[0]), np.float32) - 127   
69.                 mask = np.array(Image.open(data_name[1]), np.bool)   
70.             else:   
71.                 frame_name3 = data_name[idx][0]   
72.                 frame_name_parts = frame_name3.split('_')   
73.                
74.                 frame_nr1 = str(int(frame_name_parts[2].split('.')[0]) - 2)   
75.                 frame_nr2 = str(int(frame_name_parts[2].split('.')[0]) - 1)   
76.                 frame_nr4 = str(int(frame_name_parts[2].split('.')[0]) + 1)   
77.                 frame_nr5 = str(int(frame_name_parts[2].split('.')[0]) + 2)   
78.                
79.                 if os.path.exists(frame_nr1):                   
80.                     frame_name1 = frame_name_parts[0] + frame_name_parts[1] + frame_nr1   
81.                     frame_name2 = frame_name_parts[0] + frame_name_parts[1] + frame_nr2   
82.                 else:   
83.                     frame_name1 = frame_name3   
84.                     frame_name2 = frame_name3   
85.                 if os.path.exists(frame_nr5):   
86.                     frame_name4 = frame_name_parts[0] + frame_name_parts[1] + frame_nr4   
87.                     frame_name5 = frame_name_parts[0] + frame_name_parts[1] + frame_nr5   
88.                 else:   
89.                     frame_name4 = frame_name3   
90.                     frame_name5 = frame_name3   
91.                
92.                 frame = np.zeros((1024, 1024, 5), dtype=np.float32)   
93.                 frame[:,:,0] = np.array(Image.open(frame_name1), np.float32) - 127   
94.                 frame[:,:,1] = np.array(Image.open(frame_name2), np.float32) - 127   
95.                 frame[:,:,2] = np.array(Image.open(frame_name3), np.float32) - 127   
96.                 frame[:,:,3] = np.array(Image.open(frame_name4), np.float32) - 127   
97.                 frame[:,:,4] = np.array(Image.open(frame_name5), np.float32) - 127   
98.                 mask = np.array(Image.open(data_name[idx][1]), np.bool)   
99.         else:   
100.             if pred is True:   
101.                 frame = np.array(Image.open(data_name[0]), np.float32) - 127   
102.                 mask = np.array(Image.open(data_name[1]), np.bool)   
103.             else:   
104.                 frame = np.array(Image.open(data_name[idx][0]), np.float32) - 127   
105.                 mask = np.array(Image.open(data_name[idx][1]), np.bool)   
106.     else:   
107.         frame = []   
108.         mask = []   
109.         if idx != 0:   
110.             idx = idx + batch_size   
111.         for i in range(batch_size):   
112.             frame.append(np.array(Image.open(data_name[idx + i][0]), np.float32) - 127)   
113.             mask.append(np.array(Image.open(data_name[idx + i][1]), np.bool))   
114.     batch_x = frame   
115.     nx = batch_x.shape[1]   
116.     ny = batch_x.shape[0]   
117.     # The placeholder takes 2 channels in as n_class, therefore, change the mask   
118.     masks = np.zeros((ny, nx, n_class), dtype=np.float32)   
119.     masks[..., 1] = mask   
120.     masks[..., 0] = ~mask   
121.     batch_y = masks   
122.     if channels != 5:   
123.         return batch_x.reshape(1, ny, nx, 1), batch_y.reshape(1, ny, nx, n_class), mask   
124.     else:   
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125.         return batch_x.reshape(1, ny, nx, 5), batch_y.reshape(1, ny, nx, n_class), mask   

18.1.2 preprocess.py 

1. import numpy as np   
2. import tensorflow as tf   
3. from PIL import Image   
4. import statistics   
5.    
6. def get_freq_median(filenames_training_set):   
7.     freq_med_vec = []   
8.     max_white = 0   
9.     max_black = 0   
10.     for i in range(len(filenames_training_set)):   
11.         mask = np.array(Image.open(filenames_training_set[i][1]), np.bool)   
12.         n_white = mask.sum(axis=1).sum(axis=0)   
13.         n_black = (1024*1024) - n_white   
14.         freq_med_vec.append(n_white)   
15.         freq_med_vec.append(n_black)   
16.         max_white += n_white   
17.         max_black += n_black   
18.     freq_med = np.median(np.array(freq_med_vec))   
19.     weight_ones = freq_med/max_white   
20.     weight_zeros = freq_med/max_black   
21.     return weight_ones, weight_zeros   
22.    
23. def get_weight(filenames_training_set):   
24.     max_white = 0   
25.     max_black = 0   
26.     for i in range(len(filenames_training_set)):   
27.         mask = np.array(Image.open(filenames_training_set[i][1]), np.bool)   
28.         n_white = mask.sum(axis=1).sum(axis=0)   
29.         n_black = (1024*1024) - n_white   
30.         max_white += n_white   
31.         max_black += n_black   
32.     weight_ones = max_black/max_white   
33.     return weight_ones   

18.1.3 wrappers.py 

1. from __future__ import print_function, division, absolute_import, unicode_literals   
2.    
3. import tensorflow as tf   
4.    
5. def weight_variable(shape, stddev=0.1):   
6.     initial = tf.truncated_normal(shape, stddev=stddev)   
7.     return tf.Variable(initial)   
8.    
9. def weight_variable_deconv(shape, stddev=0.1):   
10.     return tf.Variable(tf.truncated_normal(shape, stddev=stddev))   
11.    
12. def bias_variable(shape):   
13.     initial = tf.constant(0.1, shape=shape)   
14.     return tf.Variable(initial)   
15.    
16. def conv2d(x, W, keep_prob_):   
17.     conv_2d = tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')   
18.     return tf.nn.dropout(conv_2d, keep_prob_)   
19.    
20. def deconv2d(x, W, stride):   
21.     x_shape = tf.shape(x)   
22.     output_shape = tf.pack([x_shape[0], x_shape[1]*2, x_shape[2]*2, x_shape[3]//2]) # Reduce the number

 of channels by half for each deconvolution layer   
23.     return tf.nn.conv2d_transpose(x, W, output_shape, strides=[1, stride, stride, 1], padding='SAME')   
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24.    
25. def max_pool(x, area):   
26.     return tf.nn.max_pool(x, ksize=[1, area, area, 1], strides=[1, area, area, 1], padding='SAME')   
27.    
28. def concat(x1, x2):   
29.     return tf.concat(3, [x1, x2])   
30.    
31. def softmax_per_pixel(output):   
32.     exponential_map = tf.exp(output)   
33.     sum_exp = tf.reduce_sum(exponential_map, 3, keep_dims = True)   
34.     tensor_sum_exp = tf.tile(sum_exp, tf.pack([1, 1, 1, tf.shape(output)[3]]))   
35.     return tf.div(exponential_map, tensor_sum_exp, name="predicter")   

18.1.4 stemnet.py 

1. from __future__ import print_function, division, absolute_import, unicode_literals   
2.    
3. import tensorflow as tf   
4. import numpy as np    
5. from collections import OrderedDict   
6.    
7. from wrappers import weight_variable, weight_variable_deconv, bias_variable, conv2d, deconv2d, max_pool

, concat, softmax_per_pixel   
8. from data_handler import read_data, split_data   
9.    
10. class Stemnet:   
11.     """  
12.     A fully convolutional network to segment stemcells  
13.       
14.     :param channels: number of channels in the input image  
15.     :param n_class: number of classes  
16.     :param test_size: how big part of the dataset to use for validation  
17.     :param data_size: how many images to use in the dataset  
18.     :param summaries: True for using TensorBoard, otherwise False  
19.     :param cost: name of the cost function (default is 'cross_entropy')  
20.     :param class_weights: how much to weight the underrepresented class  
21.     """   
22.        
23.     def __init__(self, channels=1, n_class=2, test_size = 0.05, data_size=-

1, summaries=False, cost="weighted_cost", class_weights=2):   
24.            
25.         # Input data   
26.         data_name = read_data('/media/misakss/DATAPART1/Frames_more/*.png', '/media/misakss/DATAPART1/M

asks_more/*.png')   
27.         self.train_data_name, self.test_data_name, self.pred_data_name = split_data(data_name[0:data_si

ze], test_size, pred_size=True)   
28.         self.n_training_data = len(self.train_data_name) # as many number of training-images    
29.         self.n_test_data = len(self.test_data_name) # as many number of test-images    
30.         self.class_weights = class_weights   
31.         #class_weights = get_weight(train_data_name) # change default in _get_cost if size of training 

set changes   
32.    
33.         self.channels = channels   
34.         self.n_class = n_class   
35.         self.summaries = summaries   
36.                    
37.         self.x = tf.placeholder("float", shape=[None, None, None, channels], name="x")   
38.         self.y = tf.placeholder("float", shape=[None, None, None, n_class], name="y")   
39.         self.keep_prob = tf.placeholder(tf.float32, name="keep_prob") #dropout   
40.            
41.         self.network_output = self.fully_convolutional_network()   
42.            
43.         self.cost = self._get_cost(cost)   
44.                    
45.         self.predicter = softmax_per_pixel(self.network_output)   
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46.         self.correct_pred = tf.equal(tf.argmax(self.predicter, 3), tf.argmax(self.y, 3))   
47.         self.accuracy = tf.reduce_mean(tf.cast(self.correct_pred, tf.float32))   
48.        
49.     def _get_cost(self, cost_name):   
50.         """  
51.         The cost function, either cross_entropy, weighted cross_entropy or dice_coefficient.  
52.         """   
53.            
54.         flat_logits = tf.reshape(self.network_output, [-1, self.n_class])   
55.         flat_labels = tf.reshape(self.y, [-1, self.n_class])   
56.         if cost_name == "cross_entropy":   
57.             loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=flat_labels, logits=fl

at_logits))   
58.                
59.         elif cost_name == 'weighted_cost':   
60.             eps = 1e-5   
61.            
62.             class_weights = tf.constant(self.class_weights, dtype=tf.float32)   
63.                                    
64.             y_argmax = tf.to_float(tf.reshape(tf.argmax(self.y, 3), [-1]))   
65.            
66.             weight_pos_tmp = tf.multiply(class_weights, y_argmax)   
67.             weight_pos = tf.add(weight_pos_tmp, tf.to_float(tf.ones(tf.shape(weight_pos_tmp))))   
68.            
69.             cost_cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=flat_labels, logits=fla

t_logits)   
70.            
71.             weighted_cost = tf.multiply(weight_pos, cost_cross_entropy)   
72.             loss = tf.reduce_mean(weighted_cost)   
73.            
74.             #loss = tf.div(cost, tf.constant(10, dtype=tf.float32))           
75.             #loss = tf.clip_by_value(cost, eps, 1.0-eps)   
76.    
77.         elif cost_name == "dice_coefficient":   
78.             eps = 1e-5   
79.                 
80.             prediction = softmax_per_pixel(self.network_output)   
81.             intersection = tf.reduce_sum(tf.mul(prediction, self.y))   
82.             union =  eps + tf.reduce_sum(tf.mul(prediction, prediction)) + tf.reduce_sum(tf.mul(self.y,

 self.y))   
83.             cost_tmp = (2 * intersection/ (union))   
84.             cost_clip = tf.clip_by_value(cost_tmp, eps, 1.0-eps)   
85.             loss = 1 - cost_clip   
86.                
87.         else:   
88.             raise ValueError("Unknown cost function: "%cost_name)   
89.    
90.         return loss   
91.    
92.     def fully_convolutional_network(self):   
93.    
94.         #------------------------ Definition and Initialization ------------------------#   
95.            
96.         # Data variables   
97.         dtype = tf.float32   
98.    
99.         # Placeholder for the input image   
100.         nx = tf.shape(self.x)[1]   
101.         ny = tf.shape(self.x)[2]    
102.    
103.         # To apply layer, reshape input to 4D tensor   
104.         x_image = tf.reshape(self.x, tf.pack([-

1,nx,ny,self.channels])) # [batch, width, height, channels]   
105.         in_layer = x_image   
106.    
107.         # Variables   
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108.         layers = 7 # number of layers in each sampling direction   
109.         patch_size = 5 # the size of the patch in each convolutional layer   
110.         features_init = 16 # number of feature maps from the first layer   
111.         area = 2 # for pooling, use a 2x2 area, which reduces the size by half   
112.         stride = 2 # for deconvolution   
113.    
114.         # Store convolutional output for concatenation and remember the order   
115.         convs = []   
116.         pools = OrderedDict()   
117.         deconvs = OrderedDict()   
118.         dw_h_convs = OrderedDict()   
119.         up_h_convs = OrderedDict()   
120.    
121.         # Strings   
122.         l_name = 'Layer'   
123.    
124.         #--------------------------------- Downsampling ---------------------------------#   
125.    
126.         for layer in range(0, layers):   
127.             print('Layer: ', layer)   
128.             # How many feature maps per layer   
129.             features_out = 2**layer*features_init   
130.             stddev = np.sqrt(2 / (patch_size**2 * features_out))   
131.    
132.             # Weights and bias   
133.             if layer == 0:   
134.                 weight = weight_variable([patch_size, patch_size, self.channels, features_out],

 stddev)   
135.             else:   
136.                 weight = weight_variable([patch_size, patch_size, features_in, features_out], s

tddev)   
137.      
138.             bias = bias_variable([features_out])   
139.            
140.             # Convolutional layer   
141.             conv = conv2d(in_layer, weight, self.keep_prob)   
142.    
143.             # Apply ReLU   
144.             h_conv = tf.nn.relu(conv + bias)   
145.             dw_h_convs[layer] = h_conv       
146.    
147.             if layer < layers - 1:   
148.                 # Pooling layer   
149.                 pools[layer] = max_pool(h_conv, area)    
150.                 in_layer = pools[layer]       
151.    
152.             # Update   
153.             features_in = features_out   
154.             convs.append(conv)   
155.    
156.         #------------------------------------ Bridge ------------------------------------#   
157.    
158.         # The input to the first deconvolutional layer   
159.         in_layer = dw_h_convs[layers-1]   
160.    
161.         #---------------------------------- Upsampling ----------------------------------#   
162.    
163.         for layer in range(layers-2, -1, -1):   
164.             print('Layer: ', layer)   
165.             # How many feature maps per layer (layer + 1 since we count/loop backwards)   
166.             features_in = 2**(layer + 1)*features_init   
167.             stddev = np.sqrt(2 / (patch_size**2 * features_in))   
168.             features_out = features_in//2   
169.    
170.             # Weights and bias deconv   
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171.             weight_d = weight_variable_deconv([stride, stride, features_out, features_in], stdd
ev)   

172.                       
173.             bias_d = bias_variable([features_out])   
174.                
175.             # Unpooling layer   
176.             deconv = deconv2d(in_layer, weight_d, stride)   
177.                        
178.             # Apply ReLU   
179.             h_deconv = tf.nn.relu(deconv + bias_d)   
180.           
181.             # Concatenate deconvolutional layer output with corresponding downsampling output   
182.             h_deconv_concat = concat(dw_h_convs[layer], h_deconv)       
183.    
184.             # Weights and bias conv   
185.             weight = weight_variable([patch_size, patch_size, features_in, features_out], stdde

v) # switched places of features_in and features_out   
186.                            
187.             bias = bias_variable([features_out]) # switched places of features_in and features_

out   
188.                   
189.             # Convolutional layer   
190.             conv = conv2d(h_deconv_concat, weight, self.keep_prob)   
191.                     
192.             # Apply ReLU   
193.             h_conv = tf.nn.relu(conv + bias)      
194.             in_layer = h_conv    
195.    
196.             # Update   
197.             convs.append(conv)   
198.             deconvs[layer] = h_deconv_concat   
199.             up_h_convs[layer] = in_layer   
200.    
201.         #------------------------------------ Output ------------------------------------#   
202.    
203.         # Update   
204.         patch_size = 1   
205.    
206.         # Weights and bias   
207.         weight = weight_variable([patch_size, patch_size, features_init, self.n_class])   
208.         bias = bias_variable([self.n_class])   
209.    
210.         # Convolutional layer   
211.         conv = conv2d(in_layer, weight, tf.constant(1.0)) # No dropout here   
212.    
213.         # Apply ReLU   
214.         output = tf.nn.relu(conv + bias, name="output")   
215.    
216.         # Update   
217.         up_h_convs["out"] = output   
218.         convs.append(conv)   
219.    
220.         print('Output done')   
221.    
222.         if self.summaries is True:   
223.            
224.             #----------------------------------- Summaries -----------------------------------

#   
225.    
226.             for i, conv in enumerate(convs):   
227.                 tf.summary.image('summary_conv_%02d'%i, self.image_summary(conv))   
228.                   
229.             for k in pools.keys():   
230.                 tf.summary.image('summary_pool_%02d'%k, self.image_summary(pools[k]))   
231.                    
232.             for k in deconvs.keys():   
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233.                 tf.summary.image('summary_deconv_concat_%02d'%k, self.image_summary(deconvs[k])
)   

234.                        
235.             for k in dw_h_convs.keys():   
236.                 tf.summary.histogram("dw_convolution_%02d"%k + '/activations', dw_h_convs[k])   
237.    
238.             for k in up_h_convs.keys():   
239.                 tf.summary.histogram("up_convolution_%s"%k + '/activations', up_h_convs[k])   
240.                
241.         return output   
242.    
243.     def image_summary(self, img, idx=0):   
244.        
245.         # Make an image summary for 4d tensor image with index idx   
246.            
247.         V = tf.slice(img, (0, 0, 0, idx), (1, -1, -1, 1))   
248.         V -= tf.reduce_min(V)   
249.         V /= tf.reduce_max(V)   
250.         V *= 255   
251.        
252.         img_w = tf.shape(img)[1]   
253.         img_h = tf.shape(img)[2]   
254.         V = tf.reshape(V, tf.pack((img_w, img_h, 1)))   
255.         V = tf.transpose(V, (2, 0, 1))   
256.         V = tf.reshape(V, tf.pack((-1, img_w, img_h, 1)))   
257.        
258.         return V   

18.1.5 train_and_eval.py 

1. from __future__ import print_function, division, absolute_import, unicode_literals   
2.    
3. import tensorflow as tf   
4. import numpy as np   
5. import tkinter   
6. import matplotlib.pyplot as plt    
7.    
8. from wrappers import weight_variable, weight_variable_deconv, bias_variable, conv2d, deconv2d, max_pool

, concat, softmax_per_pixel   
9. from data_handler import data_provider   
10.    
11. class Train_and_Eval(object):   
12.     """  
13.     Trains and evaluate Stemnet. Uses final model for prediction.  
14.       
15.     :param net: the stemnet instance to train  
16.     :param batch_size: size of training batch  
17.     :param optimizer: name of the optimizer to use (momentum or adam)  
18.     :param learning_rate: the learning rate  
19.     """   
20.            
21.     def __init__(self, net, batch_size=1, opt="momentum", learning_rate=0.1):   
22.         self.net = net   
23.         self.batch_size = batch_size   
24.         self.opt = opt   
25.         self.learning_rate = learning_rate   
26.         self.optimizer = self._get_optimizer(self.net.n_training_data)   
27.            
28.     def _get_optimizer(self, training_iters):   
29.         if self.opt == "momentum":   
30.             global_step = tf.Variable(0)   
31.             start_learning_rate = self.learning_rate   
32.             momentum = 0.2   
33.             decay_rate = 0.95   
34.                
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35.             self.learning_rate_momentum = tf.train.exponential_decay(learning_rate=start_learning_rate,
 global_step=global_step, decay_steps=training_iters, decay_rate=decay_rate, staircase=True)   

36.                
37.             optimizer = tf.train.MomentumOptimizer(learning_rate=self.learning_rate_momentum, momentum=

momentum).minimize(self.net.cost, global_step=global_step)   
38.                
39.         elif self.opt == "adam":   
40.             learning_rate = self.learning_rate #0.001   
41.             self.learning_rate_adam = tf.Variable(learning_rate)   
42.                
43.             optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate_adam).minimize(self.net

.cost, global_step=global_step)   
44.            
45.         return optimizer   
46.    
47.     def train_and_evaluation(self, test_batch_size = 1, epochs=20, dropout=0.75, display=20, save_model

_from_epoch=19, save_model_every=2):   
48.         """  
49.         Training and evaluation process  
50.           
51.         :param test_batch_size: number of images in a batch for validation  
52.         :param epochs: number of epochs  
53.         :param dropout: dropout rate (the keep probability)  
54.         :param display: steps where display stats  
55.         :param save_model_from_epoch: how many epochs to wait before saving models  
56.         :param save_model_every: steps where it saves a model  
57.         """   
58.    
59.         training_iters = self.net.n_training_data   
60.         test_iters = self.net.n_test_data          
61.    
62.         init = tf.global_variables_initializer()   
63.            
64.         t_p, f_p, t_n, f_n = self.evaluation() # (network_output, y_)   
65.            
66.         # Initializing for results   
67.         l_train = []   
68.         l_test = []   
69.         a_train = []   
70.         a_test = []   
71.         prec = []   
72.         rec = []   
73.         score = []   
74.         error = []   
75.         train_white_acc_list = []   
76.         test_white_acc_list = []   
77.         false_white_list = []   
78.    
79.         # Save model   
80.         saver = tf.train.Saver()   
81.            
82.         with tf.Session() as sess:   
83.             sess.run(init)   
84.                
85.             if self.net.summaries is True:   
86.                 # Merge all the summaries and write them out to /home/misakss/Desktop/Project   
87.                 merged = tf.summary.merge_all()   
88.                 train_writer = tf.summary.FileWriter('train', sess.graph)   
89.                 test_writer = tf.summary.FileWriter('test')   
90.    
91.             for epoch in range(epochs):   
92.                 print('Epoch: ', epoch)   
93.                 total_loss = 0   
94.                 total_test_loss = 0   
95.                 total_acc = 0   
96.                 total_F1 = 0   
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97.                 total_calc_accuracy = 0   
98.                 total_prec = 0   
99.                 total_rec = 0   
100.                 total_err = 0   
101.                 total_test_white_acc = 0   
102.                 total_n_false_white = 0   
103.    
104.                 for step in range(training_iters):   
105.                     batch_x, batch_y, train_mask = data_provider(self.net.train_data_name, self

.batch_size, step, epoch, self.net.channels, self.net.n_class, shuffle=True, pred=False)   
106.            
107.                     # Run optimization (backprop)   
108.                     _ = sess.run(self.optimizer, feed_dict = {self.net.x: batch_x, self.net.y: 

batch_y, self.net.keep_prob: dropout})   
109.    
110.                     if step % display == 0:   
111.                         print('Training-step: ', step)   
112.                         if self.net.summaries is True:   
113.                             summary, train_acc, loss, train_pred_arg = sess.run([merged, self.n

et.accuracy, self.net.cost, tf.argmax(self.net.predicter, 3)], feed_dict = {self.net.x: batch_x, self.n
et.y: batch_y, self.net.keep_prob: 1.0})   

114.                             train_writer.add_summary(summary, step)   
115.                         else:   
116.                             train_acc, loss, train_pred_arg = sess.run([self.net.accuracy, self

.net.cost, tf.argmax(self.net.predicter, 3)], feed_dict = {self.net.x: batch_x, self.net.y: batch_y, se
lf.net.keep_prob: 1.0})   

117.                         total_loss += loss   
118.                         if step % 100 == 0:   
119.                             print(loss)   
120.    
121.                 l_train.append(total_loss/(training_iters/display))   
122.                 a_train.append(train_acc)   
123.    
124.                 if (epoch % save_model_every == 0) and (epoch > save_model_from_epoch):   
125.                     saver.save(sess, "Model/model.ckpt", global_step=epoch)   
126.                
127.                 for step in range(test_iters):   
128.                     test_x, test_y, test_mask = data_provider(self.net.test_data_name, test_bat

ch_size, step, epoch, self.net.channels, self.net.n_class, shuffle=False, pred=False)    
129.    
130.                     if self.net.summaries is True:   
131.                         summary, acc, test_loss, pred, test_pred_arg = sess.run([merged, self.n

et.accuracy, self.net.cost, self.net.predicter, tf.argmax(self.net.predicter, 3)], feed_dict = {self.ne
t.x: test_x, self.net.y: test_y, self.net.keep_prob: 1.0})   

132.                         test_writer.add_summary(summary, epoch)   
133.                     else:   
134.                         acc, test_loss, pred, test_pred_arg = sess.run([self.net.accuracy, self

.net.cost, self.net.predicter, tf.argmax(self.net.predicter, 3)], feed_dict = {self.net.x: test_x, self

.net.y: test_y, self.net.keep_prob: 1.0})   
135.                     total_test_loss += test_loss   
136.                     total_acc += acc   
137.                        
138.                     err = self.error_rate(pred, test_y)   
139.                        
140.                     test_white_acc, n_false_white = self.acc_no_correct_black(test_pred_arg, te

st_mask)   
141.                        
142.                     true_positives, false_positives, true_negatives, false_negatives = sess.run

([t_p, f_p, t_n, f_n], feed_dict = {self.net.x: test_x, self.net.y: test_y, self.net.keep_prob: 1.0})   
143.                     if true_positives+false_positives != 0:   
144.                         precision = float(true_positives) / float(true_positives+false_positive

s)   
145.                     else:   
146.                         precision = 0.0   
147.                     if true_positives+false_negatives != 0:   
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148.                         recall = float(true_positives) / float(true_positives+false_negatives) 
  

149.                     else:   
150.                         recall = 0.0   
151.                     if precision != 0 and recall != 0:   
152.                         F1_score = 2*(precision*recall)/(precision+recall)   
153.                     else:   
154.                         F1_score = 0.0   
155.                     if true_positives+true_negatives+false_positives+false_negatives != 0:   
156.                         calc_accuracy = (true_positives+true_negatives)/(true_positives+true_ne

gatives+false_positives+false_negatives)   
157.                     else:   
158.                         calc_accuracy = 0.0   
159.                            
160.                     total_F1 += F1_score   
161.                     total_calc_accuracy += calc_accuracy   
162.                     total_prec += precision   
163.                     total_rec += recall   
164.                     total_err += err   
165.                     total_test_white_acc += test_white_acc   
166.                     total_n_false_white += n_false_white   
167.                        
168.                     if step == (test_iters - 1):   
169.                         print('Test-steps are done')   
170.                            
171.                         l_test.append(total_test_loss/test_iters)   
172.                            
173.                         a_test.append(total_acc/test_iters)   
174.                            
175.                         score.append(total_F1/test_iters)   
176.                            
177.                         prec.append(total_prec/test_iters)   
178.                         rec.append(total_rec/test_iters)   
179.                            
180.                         error.append(total_err/test_iters)         
181.                            
182.                         test_white_acc_list.append(total_test_white_acc/test_iters)   
183.                         false_white_list.append(total_n_false_white/test_iters)   
184.                 print(test_iters)   
185.                 print('----------------------------------------')   
186.                 print('****************************************')   
187.                 print('Precision: ', total_prec/test_iters)   
188.                 print('Recall: ', total_rec/test_iters)   
189.                 print('........................................')   
190.                 print('False White: ', total_n_false_white/test_iters)   
191.                 print('........................................')   
192.                 print('Error Rate: ', total_err/test_iters)   
193.                 print('........................................')   
194.                 print('Accuracy at step %s: %s' % (step, total_acc/test_iters))   
195.                 print('Calculated Accuracy: ', total_calc_accuracy/test_iters)   
196.                 print('White Pixel Accuracy: ', total_test_white_acc/test_iters)   
197.                 print('........................................')   
198.                 print('F1-Score: ', total_F1/test_iters)   
199.                 print('........................................')   
200.                 print('Train Loss: ', total_loss/(training_iters/display))   
201.                 print('Test Loss: ', total_test_loss/test_iters)   
202.                 print('........................................')   
203.                 new_im = self.net.predicter.eval(feed_dict = {self.net.x: test_x, self.net.y: t

est_y, self.net.keep_prob: 1.0})   
204.                 print("Saving test image to Result", epoch, ".png")   
205.                 print("Saving test mask to Result_mask", epoch, ".png")   
206.                 plt.imshow(new_im[...,1].reshape((1024,1024)))   
207.                 name = "Result" + str(epoch) + ".png"   
208.                 plt.savefig(name)   
209.                 plt.imshow(test_mask.reshape((1024,1024)))   
210.                 name_mask = "Result_mask" + str(epoch) + ".png"   
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211.                 plt.savefig(name_mask)   
212.                 print('Saved')   
213.                 print('****************************************')   
214.                 print('----------------------------------------')   
215.    
216.                 if epoch == epochs-1:   
217.                     x_pred, _, mask_pred = data_provider(self.net.pred_data_name, test_batch_si

ze, -1, epoch, self.net.channels, self.net.n_class, shuffle=False, pred=True)   
218.                     y_dummy = np.empty((x_pred.shape[0], x_pred.shape[1], x_pred.shape[2], self

.net.n_class))   
219.                     prediction, pred_arg = sess.run([self.net.predicter, tf.argmax(self.net.pre

dicter, 3)], feed_dict={self.net.x: x_pred, self.net.y: y_dummy, self.net.keep_prob: 1.0})   
220.                     if self.net.channels == 5:   
221.                         self.segmentation(prediction, pred_arg, x_pred[:,:,:,2], mask_pred)   
222.                     else:   
223.                         self.segmentation(prediction, pred_arg, x_pred, mask_pred)   
224.                     print('The paths to the frame and the mask are: ', self.net.pred_data_name)

   
225.                        
226.         self.plot_figure('Epoch', 'Loss', 'Loss', l_train, l_test, epochs, train_val=True)   
227.         self.plot_figure('Epoch', 'Accuracy', 'Accuracy', a_train, a_test, epochs, train_val=Tr

ue)   
228.         self.plot_figure('Epoch', 'Precision & Recall', 'Precision & Recall', prec, rec, epochs

)   
229.         self.plot_figure('Epoch', 'Precision', 'Precision', prec, None, epochs)   
230.         self.plot_figure('Epoch', 'White Pixel Accuracy', 'White Pixel Accuracy', train_white_a

cc_list, test_white_acc_list, epochs, train_val=True)   
231.         self.plot_figure('Epoch', 'False White', 'False White', false_white_list, None, epochs)

   
232.         self.plot_figure('Epoch', 'F1 Score', 'F1 Score', score, None, epochs)   
233.         self.plot_figure('Epoch', 'Error Rate', 'Error Rate', error, None, epochs)   
234.            
235.         # Finish off sess and writers   
236.         if self.net.summaries is True:   
237.             train_writer.close()   
238.             test_writer.close()   
239.         sess.close()   
240.         print('The program is done!')       
241.                
242.     def error_rate(self, pred, test_y):   
243.        
244.         error = 100 - 100*(np.sum(np.argmax(pred, 3) == np.argmax(test_y, 3)) / (pred.shape[0]*

pred.shape[1]*pred.shape[2]))   
245.    
246.         return error   
247.    
248.     def evaluation(self):   
249.         #logits, labels = without_correct_zeros(network_output, y)   
250.            
251.         "Returns correct predictions, and 4 values needed for precision, recall and F1 score"   
252.         #logits = tf.to_float(logits)   
253.            
254.         #labels = tf.argmax(labels, 1)   
255.         labels = tf.argmax(self.net.y, 3)   
256.         logits = softmax_per_pixel(self.net.network_output)   
257.         labels = tf.to_float(labels)   
258.         # Step 1:   
259.         # Let's create 2 vectors that will contain boolean values, and will describe our labels

   
260.    
261.         # Imagine that labels = [0,1]   
262.         # Then   
263.         # is_label_one = [False,True]   
264.         # is_label_zero = [True,False]   
265.         # Step 2:   
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266.         # get the prediction and false prediction vectors. correct_prediction is something that
 you choose within your model.   

267.         logits = tf.reshape(logits, [-1, 2])   
268.         labels = tf.reshape(tf.to_int32(labels), [-1])   
269.         is_label_one = tf.cast(labels, dtype=tf.bool)   
270.         is_label_zero = tf.logical_not(is_label_one)   
271.            
272.         correct_prediction = tf.nn.in_top_k(logits, labels, 1, name="correct_answers")   
273.         false_prediction = tf.logical_not(correct_prediction)   
274.    
275.         # Step 3:   
276.         # get the 4 metrics by comparing boolean vectors   
277.         # TRUE POSITIVES   
278.         true_positives = tf.reduce_sum(tf.to_int32(tf.logical_and(correct_prediction, is_label_

one)))   
279.    
280.         # FALSE POSITIVES   
281.         false_positives = tf.reduce_sum(tf.to_int32(tf.logical_and(false_prediction, is_label_z

ero)))   
282.    
283.         # TRUE NEGATIVES   
284.         true_negatives = tf.reduce_sum(tf.to_int32(tf.logical_and(correct_prediction, is_label_

zero)))   
285.    
286.         # FALSE NEGATIVES   
287.         false_negatives = tf.reduce_sum(tf.to_int32(tf.logical_and(false_prediction, is_label_o

ne)))   
288.    
289.         return true_positives, false_positives, true_negatives, false_negatives   
290.        
291.     def acc_no_correct_black(self, pred, mask):   
292.         pred = pred.reshape(1024*1024)   
293.         mask = mask.reshape(1024*1024)   
294.         mask = mask.astype(float)   
295.         pred = pred.astype(float)   
296.         #zero_idx_pred = np.where(pred==0)   
297.         #zero_idx_mask = np.where(mask==0)   
298.         ##comp_idx = np.where(zero_idx_pred[0] and zero_idx_mask[0])   
299.         #comp_idx = np.where([a and b for a, b in zip(zero_idx_pred[0], zero_idx_mask[0])])   
300.         comp_idx = np.where(mask==1)   
301.         false_white = np.delete(pred, comp_idx)   
302.         n_false_white = np.sum(false_white)   
303.         #mask_new = np.delete(mask, comp_idx)   
304.         #n_correct = np.sum(pred_new==mask_new)   
305.         n_correct = np.sum(pred[comp_idx]==mask[comp_idx])   
306.         #n_total = len(pred_new)   
307.         n_total_white = np.sum(mask)   
308.         if n_total_white != 0:   
309.             accuracy_white = n_correct/n_total_white   
310.         else:   
311.             accuracy_white = 1   
312.         return accuracy_white, n_false_white   
313.        
314.     def plot_figure(self, str_x, str_y, str_head, data1, data2=None, epochs=None, train_val=Non

e):   
315.         plt.figure()   
316.         if epochs is not None and data2 is not None and train_val is not None:   
317.             plt.plot(np.linspace(0, epochs, len(data1)), data1, 'r', np.linspace(0, epochs, len

(data2)), data2, 'b')   
318.             plt.legend(['train', 'validation'], loc='upper left')   
319.         elif epochs is not None:   
320.             plt.plot(np.linspace(0, epochs, len(data1)), data1)   
321.         elif epochs is None and data2 is not None:   
322.             plt.plot(np.linspace(0, epochs, len(data1)), data1, 'r', np.linspace(0, epochs, len

(data2)), data2, 'b')   
323.             plt.legend(['precision', 'recall'], loc='upper left')   
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324.         plt.ylabel(str_y)   
325.         plt.xlabel(str_x)   
326.         plt.savefig(str_head)   
327.    
328.     def segmentation(self, predict, pred_arg, truth, mask):   
329.         predict = predict[...,1].reshape((1024,1024))   
330.         pred_arg = pred_arg.reshape((1024,1024))   
331.         pred_arg_idx = np.where(pred_arg == pred_arg.max())   
332.         bck_grnd_val = pred_arg.min()   
333.         pred_arg_row_idx = pred_arg_idx[0] - 1   
334.         pred_arg_col_idx = pred_arg_idx[1] - 1   
335.         truth = truth.reshape(truth.shape[1],truth.shape[2]) + 127   
336.            
337.         edge_pixl = []   
338.         for pixel in range(len(pred_arg_row_idx)):   
339.             i = pred_arg_row_idx[pixel]   
340.             j = pred_arg_col_idx[pixel]   
341.             if (pred_arg[i+1,j] == bck_grnd_val) or (pred_arg[i-

1,j] == bck_grnd_val) or (pred_arg[i,j+1] == bck_grnd_val) or (pred_arg[i,j-
1] == bck_grnd_val) or (pred_arg[i+1,j+1] == bck_grnd_val) or (pred_arg[i-1,j-
1] == bck_grnd_val) or (pred_arg[i+1,j-1] == bck_grnd_val) or (pred_arg[i-1,j+1] == bck_grnd_val):   

342.                 edge_pixl.append((i,j))      
343.    
344.         file = open('edge_pixels','w')    
345.         file.write(str(edge_pixl).strip('[]'))    
346.         file.close()    
347.            
348.         plt.figure()   
349.         plt.imshow(predict)   
350.         plt.colorbar()   
351.         plt.savefig('Prediction')   
352.         plt.figure()   
353.         plt.imshow(pred_arg)   
354.         plt.colorbar()   
355.         plt.savefig('Argmax Prediction')   
356.         plt.figure()   
357.         plt.imshow(truth)   
358.         plt.colorbar()   
359.         plt.savefig('Truth')   
360.         plt.figure()   
361.         plt.imshow(mask)   
362.         plt.colorbar()   
363.         plt.savefig('Mask')   

18.1.6 restore_and_use_model.py 

1. import tensorflow as tf   
2. import numpy as np   
3. import tkinter   
4. import matplotlib.pyplot as plt    
5. import numpy as np   
6. from data_handler import data_provider   
7. #from wrappers import softmax_per_pixel   
8.    
9. class Restore_and_Use_Model:   
10.     """  
11.     Restore the model (Stemnet) and use it for prediction  
12.       
13.     :param frame_path: the path of the frame  
14.     :param mask_path: the path of the mask  
15.     :param meta_model_path: the path of the meta-model  
16.     """   
17.    
18.     def __init__(self, frame_path, mask_path, meta_model_path):    
19.         self.frame_path = frame_path   



63(64) 
 

20.         self.mask_path = mask_path   
21.         self.meta_model_path = meta_model_path   
22.         self.path = meta_model_path.rsplit('/', 1)[0]   
23.    
24.     def run_session(self):   
25.         data_name = (self.frame_path, self.mask_path)   
26.            
27.         ckpt = tf.train.get_checkpoint_state(self.path) # Argument should be the path where the model i

s stored   
28.    
29.         saver = tf.train.import_meta_graph(self.meta_model_path)   
30.    
31.         init = tf.global_variables_initializer()   
32.    
33.         with tf.Session() as sess:   
34.    
35.             sess.run(init)   
36.    
37.             saver.restore(sess, ckpt.model_checkpoint_path)   
38.                
39.             graph = tf.get_default_graph()   
40.                
41.             x = graph.get_tensor_by_name("x:0")   
42.             y_ = graph.get_tensor_by_name("y_:0")   
43.             keep_prob = graph.get_tensor_by_name("keep_prob:0")   
44.              
45.             #output = graph.get_tensor_by_name("output:0")   
46.             predicter = graph.get_tensor_by_name("predicter:0")   
47.    
48.             #predicter = softmax_per_pixel(output)   
49.    
50.             x_pred, _, mask_pred = data_provider(data_name, 1, -1, 0, 1, 2, shuffle=False, pred=True)   
51.             y_dummy = np.empty((x_pred.shape[0], x_pred.shape[1], x_pred.shape[2], 2))   
52.             prediction, pred_arg = sess.run([predicter, tf.argmax(predicter, 3)] ,feed_dict={x: x_pred,

 y_: y_dummy, keep_prob: 1.0})   
53.             self.segmentation(prediction, pred_arg, x_pred, mask_pred)   
54.    
55.         sess.close()   
56.    
57.     def segmentation(self, predict, pred_arg, truth, mask):   
58.         predict = predict[...,1].reshape((1024,1024))   
59.         pred_arg = pred_arg.reshape((1024,1024))   
60.         pred_arg_idx = np.where(pred_arg == pred_arg.max())   
61.         bck_grnd_val = pred_arg.min()   
62.         pred_arg_row_idx = pred_arg_idx[0] - 1   
63.         pred_arg_col_idx = pred_arg_idx[1] - 1   
64.         truth = truth.reshape(truth.shape[1],truth.shape[2]) + 127   
65.            
66.         edge_pixl = []   
67.         for pixel in range(len(pred_arg_row_idx)):   
68.             i = pred_arg_row_idx[pixel]   
69.             j = pred_arg_col_idx[pixel]   
70.             if (pred_arg[i+1,j] == bck_grnd_val) or (pred_arg[i-

1,j] == bck_grnd_val) or (pred_arg[i,j+1] == bck_grnd_val) or (pred_arg[i,j-
1] == bck_grnd_val) or (pred_arg[i+1,j+1] == bck_grnd_val) or (pred_arg[i-1,j-
1] == bck_grnd_val) or (pred_arg[i+1,j-1] == bck_grnd_val) or (pred_arg[i-1,j+1] == bck_grnd_val):   

71.                 edge_pixl.append((i,j))      
72.    
73.         file = open('edge_pixels','w')    
74.         file.write(str(edge_pixl).strip('[]'))    
75.         file.close()    
76.            
77.         plt.figure()   
78.         plt.imshow(predict)   
79.         plt.colorbar()   
80.         plt.savefig('Prediction')   
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81.         plt.figure()   
82.         plt.imshow(pred_arg)   
83.         plt.colorbar()   
84.         plt.savefig('Argmax Prediction')   
85.         plt.figure()   
86.         plt.imshow(truth)   
87.         plt.colorbar()   
88.         plt.savefig('Truth')   
89.         plt.figure()   
90.         plt.imshow(mask)   
91.         plt.colorbar()   
92.         plt.savefig('Mask')   

18.2 Demo Scripts 
18.2.1 Network1.py 

1. import stemnet   
2. import train_and_eval   
3.    
4. net = stemnet.Stemnet()   
5.    
6. run = train_and_eval.Train_and_Eval(net)   
7.    
8. run.train_and_evaluation()   

18.2.2 Network5.py 

1. import stemnet   
2. import train_and_eval   
3.    
4. net = stemnet.Stemnet(channels=5)   
5.    
6. run = train_and_eval.Train_and_Eval(net)   
7.    
8. run.train_and_evaluation() 

18.2.3 predict.py 

1. import restore_and_use_model   
2.    
3. frame_path = 'Frames/frame2009_1_2.png'   
4. mask_path = 'Masks/mask2009_1_2.png'   
5. meta_model_path = '/media/misakss/DATAPART1/Network1_model4/model-normal.ckpt-4.meta'   
6.    
7. model = restore_and_use_model.Restore_and_Use_Model(frame_path, mask_path, meta_model_path)   
8.    
9. model.run_session()   
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