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Figure 1: Examples of our4� and8� upsampling results. Our model without GAN sets a new state-of-the-art benchmark in terms of PSNR/SSIM; our
GAN-extended model yields high perceptual quality and is able to hallucinate plausible details up to8� upsampling ratio.

Abstract

Recent deep learning approaches to single image super-
resolution have achieved impressive results in terms of tra-
ditional error measures and perceptual quality. However, in
each case it remains challenging to achieve high quality re-
sults for large upsampling factors. To this end, we propose a
method (ProSR) that is progressive both in architecture and
training: the network upsamples an image in intermediate
steps, while the learning process is organized from easy to
hard, as is done in curriculum learning. To obtain more
photorealistic results, we design a generative adversarial
network (GAN), namedProGanSR, that follows the same
progressive multi-scale design principle. This not only al-
lows to scale well to high upsampling factors (e.g.,8� ) but
constitutes a principled multi-scale approach that increases
the reconstruction quality for all upsampling factors simul-
taneously. In particular ProSR ranks 2nd in terms of SSIM
and 4th in terms of PSNR in the NTIRE2018 SISR chal-
lenge [35]. Compared to the top-ranking team, our model
is marginally lower, but runs 5 times faster.

1. Introduction

The widespread availability of high resolution displays
and rapid advancements in deep learning based image pro-
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pleted during his time at Disney Research.

cessing has recently sparked increased interest in super-
resolution. In particular, approaches to single image su-
per resolution (SISR) have achieved impressive results by
learning the mapping from low-resolution (LR) to high-
resolution (HR) images based on data. Typically, the up-
scaling function is a deep neural network (DNN) that is
trained in a fully supervised manner with tuples of LR
patches and corresponding HR targets. DNNs are able to
learn abstract feature representations in the input image that
allow some degree of disambiguation of the �ne details in
the HR output.

Most existing SISR networks adopt one of the two fol-
lowingdirectapproaches. The �rst upsamples the LR image
with a simple interpolation method (e.g., bicubic) in the be-
ginning and then essentially learns how to deblur [7,20,33].
The second proposes upsampling only at the end of the
processing pipeline, typically using a sub-pixel convolution
layer [30] or transposed convolution layer to recover the HR
result [8,23,30,37]. While the �rst class of approaches has
a large memory footprint and a high computational cost, as
it operates on upsampled images, the second class is more
prone to checkerboard artifacts [27] due to simple concate-
nation of upsampling layers. Thus it remains challenging to
achieve high quality results for large upsampling factors.

In this paper, we propose a method that is progressive
both in architecture and training. We design the network
to reconstruct a high resolution image in intermediate steps
by progressively performing a2� upsampling of the input
from the previous level. As building blocks for each level
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Figure 2: Asymmetric pyramidal architecture. More DCUs are allocated in the lower pyramid level to improve the reconstruction accuracy and to reduce
memory consumption.

of the pyramid, we proposedense compression units, which
are adapted from dense blocks [16] to suit super-resolution.
Compared to existing progressive SISR models [21, 22],
we improve the reconstruction accuracy by simplifying the
information propagation within the network; furthermore
we propose to use anasymmetric pyramidalstructure with
more layers in the lower levels to enable high upsampling
ratios while remaining ef�cient. To obtain more photoreal-
istic results, we adopt the GAN framework [14] and design
a discriminator that matches the progressive nature of our
generator network by operating on the residual outputs of
each scale. Such paired progressive design allows us to ob-
tain amulti-scalegenerator with a uni�ed discriminator in
a single training.

In this framework, we can naturally utilize a form ofcur-
riculum learning, which is known to improve training [4]
by organizing the learning process from easy (small upsam-
pling factors) to hard (large upsampling factors). Compared
to common multi-scale training, the proposed training strat-
egy not only improves results for all upsampling factors, but
also signi�cantly shortens the total training time and stabi-
lizes the GAN training.

We evaluate our progressive multi-scale approach
against the state-of-art on a variety of datasets, where we
demonstrate improved performance in terms of traditional
error measures (e.g., PSNR) as well as perceptual quality,
particularly for larger upsampling ratios.

2. Related Work

Single image super-resolution techniques (SISR) have
been an active area of investigation for more than a
decade [12]. The ill-posed nature of this problem has typi-
cally been tackled using statistical techniques: most notably

image priors such as heavy-tailed gradient distributions
[10,29], gradient pro�les [32], multi-scale recurrence [13],
self-examples [11], and total variation [26]. In contrast,
exemplar-based approaches such as nearest-neighbor [12]
and sparse dictionary learning [36, 38, 40] have exploited
the inherent redundancy of large-scale image datasets. Re-
cently, Donget al. [6] showed the superiority of a simple
three-layer convolutional network (CNN) over sparse cod-
ing techniques. Since then, deep convolutional architectures
have consistently pushed the state-of-art forward.

Direct vs. Progressive Reconstruction. Direct recon-
struction techniques [7, 20, 23, 24, 33, 37] upscale the im-
age to the desired spatial resolution in a single step. Early
approaches [7, 20, 33] upscale the LR image in a pre-
processing step. Thus, the CNN learns to deblur the input
image. However, this requires the network to learn a feature
representation for a high-resolution image which is com-
putationally expensive [30]. To overcome this limitation,
many approaches opt for operating on the low dimensional
features and perform upsampling at the end of the network
via sub-pixel convolution [30] or transposed convolution.

A popular progressive reconstruction approach is de-
scribed by LapSRN by Laiet al. [21]. In their work, the up-
sampling follows the principle of Laplacian pyramids, i.e.
each level learns to predict a residual that should explain the
difference between a simple upscale of the previous level
and the desired result. Since the loss functions are com-
puted at each scale, this provides a form of intermediate su-
pervision. Laiet al. improved their method with deep and
wider recursive architecture and multi-scale training [22].
While [22] improved the accuracy, there remains a consid-
erable gap between the top-performing approach in terms
of PSNR [24]. In particular, as we show in Section4.2,



the Laplacian pyramidal structure aggravates the optimiza-
tion dif�culty. Furthermore, the recursive pyramids result
in quadratic growth of computation in the higher pyramid
level, becoming the bottleneck for reducing runtime and
expanding the network capability. Lastly, in addition to a
progressive generator, we also propose a progressive dis-
criminator along with a progressive training strategy.

Perceptual Loss Functions. The aforementioned tech-
niques optimize the reconstruction error by minimizing the
`1-norm and descendants such as the Charbonnier penalty
function [21]. Although these approaches yield small re-
construction errors, they are unable to hallucinate perceptu-
ally plausible high-frequencies details. To this end, Lediget
al. [23] proposed a perceptual loss function consisting of a
content loss that captures perceptual similarities and an ad-
versary to steer the reconstruction closer to the latent man-
ifold of natural solutions. Based on this, Sajjadiet al. [28]
apply an additional texture loss to encourage similarity with
the original image. In contrast to these works, we design a
discriminator that operates on the residual outputs of each
scale and train progressively with a strategy based on cur-
riculum learning. With this, our GAN model is able to up-
sample perceptually pleasing SR images formultiple scales
up to8� .

3. Progressive Multi-scale Super-resolution

Given a set ofn LR input images with corresponding HR
target imagesf (x 1; y1); : : : ; (x n ; yn )g, we consider the
problem of estimating an upscaling functionu : X ! Y ,
whereX andY denote the space of LR and HR images,
respectively. Finding a suitable parameterisation for the up-
scaling functionu for large upsampling ratios, is challeng-
ing: the larger the ratio, the more complex the function class
required.

To this end, we propose a progressive solution to learn
the upscaling functionu. In the following, we propose
our pyramidal architecture,ProSR, for multi-scale super-
resolution in Section3.1and3.2. In Section3.3we propose
ProGanSR, a progressive multi-scale GAN for perceptual
enhancement. Finally, we discuss a curriculum learning
scheme in Section3.4.

3.1. Pyramidal Decomposition

We propose apyramidaldecomposition ofu into a series
of simpler functionsu0; : : : ; us. Each function—or level—
is tasked with re�ning the feature representation and per-
forming a2� upsampling of its own input. Each level of the
pyramid consists of a cascade ofdense compression units
(DCUs) followed by a sub-pixel convolution layer. We as-
sign more DCUs in the lower pyramid levels, resulting in
theasymmetric structure. Having more computation power

�X�V����

�U�V����

�X�V

�����Z�E�L�O�L�Q�H�D�U���[��
�U�o�V����

��� ���5�V�������[
�V���¬��

�U�V
�Z

�5�V���[
�V�������� �U�o�V�[�V

�X��

�Y�� �Y��

�X��

�Y��

�����Z

�Z

�&�R�Q�Y���������� �$�Y�J�3�R�R�O
�U�o��

�X��

������

Figure 3: Schematic illustration of the blending procedure in curriculum
training for the generator (top) and the discriminator (bottom).vscale , r s
denote the scale-speci�c input and reconstruction layer, andus denotes
the pyramid of scales. � varies from 0 to 1 during blending to control the
impact of the new pyramid.

in the lower pyramid not only reduces the memory con-
sumption but also increases the receptive �eld with respect
to the original image, hence it outperforms the symmet-
ric variant in terms of reconstruction quality and runtime.
While the decomposition ofu is shared among the pyramid
levels, we also use two scale-speci�c sub-networks, denoted
by vs andr s, which allow for an individual transformation
between scale-varying image space and a normalized fea-
ture space. A schematic illustration of ourprogressiveup-
sampling architecture is detailed in Figure2.

To simplify learning, the network is designed to output
the residual

R s(x ) = ( r s � us � � � � � u0 � vs)(x ) (1)

w.r.t a �xed upsampling of the input' s(x ) throughe.g.
bicubic interpolation. Thus, for a given scaling factors the
estimated HR image can be computed as

ŷ = R s(x ) + ' s(x ): (2)

Notably, our network doesn't follow the Laplacian pyra-
mid principle like in [21,22], i.e. the intermediate sub-net
outputs are neither supervised nor used as base image in the
subsequent level. Such design performs favorably over the
Laplacian alternative, as it simpli�es the backward-pass and
thus reduces the optimization dif�culty. Additionally we
do not downsample the groundtruth to create labels, which
is done for the intermediate supervision in [21, 22]. This
avoids artefacts that may result from subsampling.

3.2. Dense Compression Units

We base the construction of each pyramid level on the
recently proposed DenseNet architecture [16]. Similarly to



skip connections [15], dense connections improve gradient
�ow alleviating vanishing and shattered gradients [3].

The core component in each level of the pyramid is a
dense compression unit (DCU), which consists of a modi-
�ed densely connected block followed by1� 1 convolution
CONV(1,1).

The original dense layer is composed of BN-RELU-
CONV(1,1)-BN-RELU-CONV(3,3). Following recent
practice in super-resolution [9,24,39], we remove all batch
normalizations. However, since the features from previous
layers may have varying scales, we also remove the �rst
ReLU to rescale the features with CONV(1-1). This leads to
a modi�ed dense layer composition: CONV(1,1)-RELU-
CONV(3,3).

Contrary to DenseNet, we break the dense connection at
the end of each DCU with a CONV(1,1) compression layer,
which re-assembles information ef�ciently and leads to a
slight performance gain in spite of the breakage of dense
connection. For a very deep model we apply pyramid-wise
as well as local residual links to improve the gradient prop-
agation as shown in Figure2.

3.3. Progressive GAN

Generative adversarial networks (GANs) [14] have
emerged as a powerful method to enhance the perceptual
quality of the upsampled images [14,23,28] in SISR.

However, training GANs is notoriously dif�cult and suc-
cess at applying GANs to SISR has been limited to single-
scale upsampling at relatively low target resolutions. In or-
der to enable multi-scale GAN-enhanced SISR, we propose
a modular and progressive discriminator network similar to
the generator network proposed in the previous section. As
illustrated in the bottom of Figure3, the architecture has
a reverse pyramid structuref u2; u1; u0g, where each level
gradually reduces the spatial dimension of the input image
with AVGPOOLING. Similar to the generator, scale-speci�c
image transformation layersvscale are implied before each
pyramid. To accommodate the multi-scale outputs from the
generator, the network is fully convolutional and outputs a
small patch of features similar to PatchGAN [18]. The com-
plete specs of the discriminator can be found in the supple-
mental material.

Similar to the generator network, the discriminator op-
erates on the residual between the original and bicubic up-
sampled image. This allows both generator and discrimi-
nator to concentrate only on the important sources of vari-
ation which are not already well captured by the standard
upsampling operation. Since these regions are challenging
to upsample well, they correspond to the largest percep-
tual errors. This can also be viewed as subtracting a data-
dependent baseline from the discriminator which helps to
reduce variance.

As the training objective, we use the more stable least

square loss instead of the original cross-entropy loss [25].
Denoting the predicted residual and real residual asr̂ andr ,
the discriminator loss and generator loss for a training ex-
ample of scales can be expressed as

L i
D s

=( D (r̂ i
s))2 + ( D (r s

i ) � 1)2 (3)

L i
R s

=( D (r̂ i
s) � 1)2+ (4)

X

k2f 2;4g

k� k (ŷ i ) � � k (y i )k2 ;

where � k denotes thek-th pooling layer input in
VGG16 [31].

3.4. Curriculum Learning

Curriculum learning [4] is a strategy to improve training
by gradually increasing the dif�culty of the learning task. It
is often used in sequence prediction tasks and in sequential
decision making problems where large speedups in training
time and improvements in generalisation performance can
be obtained.

The pyramidal decomposition ofu allows us to apply
curriculum learning in a natural way. The loss for a training
example(x s

i ; y i ) of scales can be de�ned as

L i
R s

= kR s (x s
i ) + ' s (x s

i ) � y i k1 (5)

wherex s
i corresponds tos� downsampled version ofy i .

Then the goal at scales is to �nd

�̂ s = argmin
� s

X

s0� s

X

i

L i
R s 0 ; (6)

where� s parameterises all functions in and below the cur-
rent scale(u0; v0; r 0; : : : ; us; vs; r s) according to our pyra-
midal network shown in Figure2. Our training curriculum
starts by training only the2� portion of the network. When
we proceed to a new phase in the curriculum (e.g. to 4� ),
a new level of the pyramid is gradually blended in to re-
duce its impact on the previously trained layers. As Figure3
shows, for the generator the predicted residualr̂ s at scales
is a linear combination of the outputs from levels ands� 1,
while in analog for the discriminator, the output features
from the new pyramid are combined with the output of the
scale-speci�c input layer from the previous levelvscale � 1,
before entering the trained pyramidsf us� 1; : : : ; u0g. Bilin-
ear interpolation and AVGPOOL are used to match the spa-
tial dimensions before merging. In both cases,� controls
the in�uence of the new pyramid and thus it varies from
0 to 1 during the blending procedure. As a result we incre-
mentally add training pairs of the next scale. While a similar
idea was proposed in [19] to improve high-resolution image
generation, we use this strategy in the context ofmulti-scale
training. Finally, to assemble the batches, we randomly se-
lect one of the scaless to avoid mixing batch statistics as
suggested in [2].



Compared to simple multi-scale training where training
examples from different scales are simultaneously fed to the
network, such progressive training strategy greatly shortens
the total training time. Furthermore, it yields a further per-
formance gain for all included scales compared to single-
scale and simple multi-scale training and alleviates instabil-
ities in GAN training.

4. Evaluation

Before we compare with popular state-of-the-art ap-
proaches, we �rst discuss the bene�ts of each of our pro-
posed components using a small 24-layer model.

All presented models are trained with the DIV2K [34]
training set, which contains 800 high-resolution images.
The training details are listed in the supplemental material.
For evaluation, the benchmark datasets Set5 [5], Set14 [41],
BSD100 [1], Urban100 [17], and the DIV2K validation set
[34] are used. As it is commonly done in SISR, all evalua-
tions are conducted on the luminance channel.

4.1. Ablation study

Ablation Study Method PSNR Parameters runtime

Baseline
Single Dense Block,
Dense Layer BRCBRC,
Single Scale

28.30 8.22M 0.19s

Block Division 4 DCUs 28.32 1.79M 0.11s

Architecture Asymmetric Pyramid 28.41 1.89M 0.11s

Training Curriculum Learning 28.45 1.89M 0.11s

Very Deep Model
Increased network
width and depth
longer training

28.94 13.4M 0.27s

Table 1: Overview of experiments in the ablation study. The introduction
of DCUs, block division, an asymmetric pyramid layout, and curriculum
learning allow to consistently increase reconstruction quality. Reported
PSNR values refer to4� results of Set14. The runtime is tested for4�
upscaling of128 � 128 image.

Table 1 summarizes the consistent increase in recon-
struction quality stemming from each proposed component.
As a baseline, we start from a single dense block with two
sub-pixel upsampling layers in the end and a residual con-
nection from the LR input to the �nal output. In the follow-
ing, we describe the individual steps in more detail.

Dense Compression Units. To demonstrate the bene�t of
DCUs described in Section3.2, we replace the single-block
from the baseline model with multiple DCUs. As Table1
shows, the number of network parameters can be drastically
reduced without harming the reconstruction accuracy. We
can even observe a slight performance gain as the network
is able to reassemble features more ef�ciently due to the
injection of compression layers.

Asymmetric Pyramid. In this section we show the ad-
vantage of the proposed asymmetric pyramidal architecture.
We compare the following constellations while keeping the
total number of DCUs constant:

Model Architecture

Direct D � D � D � D � S � S
Asymmetric Pyramid D � D � D � S � D � S

Here,D denotes a dense compression unit with6 dense
layers andS denotes the sub-pixel upsampler. As Table1
shows, the asymmetric pyramidal architecture considerably
improves the reconstruction accuracy compared to direct
upsampling. This demonstrates the advantage of utilizing
high-dimensional features directly. Furthermore, by assign-
ing more computation in the lower pyramid, the penalty
in memory and computation consumption compared to di-
rect upsample approach is signi�cantly reduced. As shown
in Table 1, for small model, asymmetric pyramid model
achieves the same runtime as direct upsampling.

Curriculum Learning. We extend the 4-DCU asymmet-
ric pyramid model to8� upsampling to quantify the ben-
e�t of curriculum learning over simultaneous multi-scale
training. As Table2 shows, simultaneous training typically
has small or even negative impact on the lowest scale (2� ),
which is also evident in VDSR [20] (see Table 2). On the
other hand, curriculum learning always improves the recon-
struction quality and outperforms simultaneous training by
an average of 0.04dB.

Furthermore, curriculum learning considerably shortens
the training time. As Figure4 shows, the network reaches
the same number of epochs and quality faster than simulta-
neous training, since the2� subnet requires less computa-
tion and hence less time for each update.

4.2. Comparison with other progressive architec
tures.

In contrast to our approach, existing progressive methods
[21,22] typically rely on deep supervision. They impose a
loss on all scales which can be denoted as

L i
s =

X

s0<s

`1

�
 s0(y i ); ŷ s0

i

�
+ `1 (y s

i ; ŷ s
i ) ; (7)

with  s0 being a downsampling operation to scales0.
Futhermore, following the structure of a Laplacian pyramid,
each level is encouraged to learn the difference between a
bicubic upscale of the previous level instead of the upsam-
pled LR image. Thus the residual connections are given by

ŷ s = r̂ s + ' 2
�
y s� 1�

; (8)

where' 2 denotes an upscaling operator by a factor of 2.



Improvement
w.r.t single-scale
2� /4� /8� (dB)

Set5 Set14 B100 U100 DIV2K average

simultaneous -0.05/+0.09/-0.01 +0.01/+0.03/+0.05 +0.02/+0.01/+0.03 +0.12/+0.06/+0.08 +0.06/-0.02/+0.05 +0.06/+0.02/+0.05
curriculum +0.05/+0.11/+0.08 +0.08/+0.04/+0.06 +0.07/+0.03/+0.05 +0.21/+0.09/+0.08 +0.13/+0.02/+0.05 +0.13/+0.05/+0.06

Table 2: Gain of simultaneous training and curriculum learning w.r.t. single-scale training on all datasets. The average is computed accounting the number
of images in the datasets. Curriculum learning improves the training for all scales while simultaneous training hampers the training of the lowest scale.
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Figure 4: Training time comparison between curriculum learning and multiscale simultaneous learning. We train the multiscale model and plot the PSNR
evaluation of the individual scales. The elapsed epoch is encoded as the line color. Because curriculum learning activates the smaller subnets �rst, it requires
much less time to reach the same evaluation quality.

model
B100 Set14

2� 4� 8� 2� 4� 8�

single
scale

ours - 27.44 - - 28.41 -
alt - 27.32 - - 28.20 -

multi
scale

ours 31.95 27.47 24.75 33.24 28.45 24.86
alt 31.92 27.38 24.70 33.22 28.28 24.76

Table 3: Comparison with other progressive approaches.

We also evaluate such alternative progressive architec-
ture but observed large decrease in PSNR as shown in Ta-
ble 3. Therefore, we conclude that it is less stable to use
varying sub-scale upsampling results as base images com-
pared to �xed interpolated results and that using a down-
sampling kernel to create the HR label images could intro-
duce undesired artefacts.

4.3. Comparison with Stateoftheart Approaches

In this section, we provide an extensive quantitative
and qualitative comparison with other state-of-the-art ap-
proaches.

Quantitative Comparison. For a quantitative compari-
son, we benchmark against VDSR [20], DRRN [33], Lap-
SRN [21], MsLapSRN [22], EDSR [24]. We obtained
models from Laiet al. [22] for 8� versions of VDSR and

DRRN, that have been retrained with8� data. To produce
8� EDSR results, we extend their4� model by adding an-
other sub-pixel convolution layer. For training, we follow
their practice which means we initialize the weights of the
8� model from the pretrained4� model.

Due to discrepancy in the model size within existing ap-
proaches, we divide them into two classes based on whether
they have more or less than5 million parameters. Accord-
ingly, we provide two models with different sizes, denoted
as ProSRs and ProSR̀, to compete in both classes. ProSRs

has 56 dense layers in total with growth-ratek = 12 and a
total of 3.1M parameters. ProSR` has 104 dense layers with
growth-ratek = 40 and 15.5M parameters which is roughly
a third of the parameters of EDSR.

Table 4 summarizes the quantitative comparison with
other state-of-the-art approaches in terms of PSNR. An ex-
tended list that includes SSIM scores can be found in the
supplemental material. As Table4 shows, ProSRs achieves
the lowest error in most datasets. The very deep model,
ProSR̀, shows consistent advantage in higher upsampling
ratios and is comparable with EDSR in2� . In general, our
progressive design allows to raise the margin in PSNR be-
tween our results and the state-of-the art as the upsampling
ratio increases.

Qualitative comparison. First, we qualitatively compare
our method without GAN to other methods that also min-
imise the`1 loss or related norms. Figure7 show results of



PSNR [23] [28] Ours HR PSNR [23] [28] Ours HR

Figure 5: Comparison of4� GAN results (best viewed when zoomed in). Our approach is less prone to artefacts and aligns well with the original image.

w/ GAN w/o GAN Input w/ GAN w/o GAN Input

Figure 6: Hallucinated details in8� upsample result with adversarial loss.

our method and the most recent state-of-the-art approaches
in 4� and8� .

Concerning our perceptually-driven model with GAN,
we compare with SRGAN [23] and EnhanceNet [28]. As
Figure5 shows, the hallucinated details align well with �ne
structures in the ground truth, even though we do not have
an explicit texture matching loss as EnhanceNet [28]. While
SRGAN and EnhanceNet can only upscale4� , our method
is able to extend to8� . Results are shown in Figure6. We
provide an extended qualitative comparison in the supple-
mental material.

5. Runtime.

The asymmetric pyramid architecture contributes to
faster runtime compared to other approaches that have sim-
ilar reconstruction accuracy. In our test environment with
NVIDIA TITAN XP and cudnn6.0, ProSR̀takes on av-
erage 0.8s, 2.1s and 4.4s to upsample a520 � 520 image
by 2� , 4� and8� . In the NTIRE challenge, we reported
the runtime including geometric ensemble, which requires
8 forward passes for each transformed version of the input
image. Nonetheless, our runtime is still 5 times faster than
the top-ranking team.

6. NTIRE Challenge

The “New Trends in Image Restoration and Enhance-
ment” (NTIRE) 2018 super-resolution challenge [35] aims
at benchmarking SISR methods in challenging scenarios.

In particular, one of the challenge tracks targets8� up-
scaling, where the low resolution images are generated with

known downsampling kernels (bicubic). We participated in
the challenge with the ProSR` network. In addition to the
method described above, we utilised the geometry ensemble
used in [24], which yielded a 0.07dB PSNR gain in the val-
idation set. Our model ranks 2nd in terms of SSIM and 4th
in terms of PSNR. Compared to the top-ranking team, our
model is marginally lower by 0.002 and 0.04dB in SSIM
and PSNR respectively, but runs 5 times as fast in test time.

Other tracks in the challenge target4� upscaling but
consider unknown degradation. Given that this task is dif-
ferent to the bicubic8� setting, the participating teams and
the rankings differ. Without speci�c adaptation for this sce-
nario, we also participated in these tracks for completeness
and ranked in the mid-range (7th/9th/7th). We believe fur-
ther improvement can be achieved with targeted preprocess-
ing and extended training data.

7. Conclusion

In this work we propose a progressive approach to ad-
dress SISR. We leverage asymmetric pyramid design and
Dense Compression Units in the architecture, both of which
lead to improved memory ef�ciency and reconstruction ac-
curacy. A matching pyramidal discriminator is proposed,
which enables optimizing for perceptual quality simultane-
ously for multiple scale. Furthermore we leverage a form
of curriculum learning which not only increases the perfor-
mance for all scales but also reduces the total training time.
Our models sets a new state-of-the-art benchmark in both
traditional error measures and perceptual quality.



PSNR
2� 4� 8�

S14 B100 U100 DIV2K S14 B100 U100 DIV2K S14 B100 U100 DIV2K

# params< 5M
VDSR 33.05 31.90 30.77 35.26 28.02 27.29 25.18 29.72 24.26 24.49 21.70 26.22
DRRN 33.23 32.05 31.23 35.49 28.21 27.38 25.44 29.95 24.42 24.59 21.88 26.37
LapSRN 33.08 31.80 30.41 35.63 28.19 27.32 25.21 29.88 24.35 24.54 21.81 26.40
MsLapSRN 33.28 32.05 31.15 35.62 28.26 27.43 25.51 30.39 24.57 24.65 22.06 26.52
SRDenseNet - - - - 28.50 27.53 26.05 - - - -
ProSRs (ours) 33.36 32.02 31.42 35.80 28.59 27.58 26.01 30.39 24.93 24.80 22.43 26.88

# params> 5M
EDSR 33.92 32.32 32.93 36.47 28.80 27.71 26.64 30.71 24.96 24.83 22.53 26.96
ProSRl (ours) 34.00 32.34 32.91 36.44 28.94 27.79 26.89 30.81 25.29 24.99 23.04 27.36

Table 4: Comparison with state-of-the-art approaches. For clarity, we highlight the best approach inblue.

8� LR DRRN [33]
24.31 dB/0.6627

MsLapSRN [22]
24.29 dB/0.667

EDSR [24]
24.96 dB/0.699

ProSR̀ (Ours)
25.18 dB/0.708

HR

8� LR DRRN [33]
27.55 dB/0.7663

MsLapSRN [22]
27.62 dB/0.769

EDSR [24]
27.93 dB/0.776

ProSR̀ (Ours)
28.20 dB/0.781

HR

4� LR DRRN [33]
21.50 dB/0.5218

MsLapSRN [22]
21.49 dB/0.524

EDSR [24]
21.79 dB/0.553

ProSR̀ (Ours)
21.86 dB/0.557

HR

4� LR DRRN [33]
22.32 dB/0.6926

MsLapSRN [22]
22.25 dB/0.698

EDSR [24]
22.91 dB/0.719

ProSR̀ (Ours)
22.93 dB/0.715

HR

Figure 7: Visual comparison with other state-of-the-art methods.
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