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Figure 1: Examples of out and8 upsampling results. Our model without GAN sets a new state-of-the-art benchmark in terms of PSNR/SSIM; our
GAN-extended model yields high perceptual quality and is able to hallucinate plausible detail® upipsampling ratio.

Abstract cessing has recently sparked increased interest in super-
resolution. In particular, approaches to single image su-
Recent deep learning approaches to single image super-per resolution (SISR) have achieved impressive results by
resolution have achieved impressive results in terms of tra-learning the mapping from low-resolution (LR) to high-
ditional error measures and perceptual quality. However, in resolution (HR) images based on data. Typically, the up-
each case it remains challenging to achieve high quality re- scaling function is a deep neural network (DNN) that is
sults for large upsampling factors. To this end, we propose atrained in a fully supervised manner with tuples of LR
method ProSR) that is progressive both in architecture and patches and corresponding HR targets. DNNs are able to
training: the network upsamples an image in intermediate learn abstract feature representations in the input image that
steps, while the learning process is organized from easy toallow some degree of disambiguation of the ne details in
hard, as is done in curriculum learning. To obtain more the HR output.
photorealistic results, we design a generative adversarial  Most existing SISR networks adopt one of the two fol-
network (GAN), name&roGanSR that follows the same  lowingdirectapproaches. The rstupsamples the LR image
progressive multi-scale design principle. This not only al- with a simple interpolation method (e.g., bicubic) in the be-
lows to scale well to high upsampling factors (eg.,) but ginning and then essentially learns how to deblyr (), 33].
constitutes a principled multi-scale approach that increases The second proposes upsampling only at the end of the
the reconstruction quality for all upsampling factors simul- processing pipeline, typically using a sub-pixel convolution
taneously. In particular ProSR ranks 2nd in terms of SSIM layer [30] or transposed convolution layer to recover the HR
and 4th in terms of PSNR in the NTIRE2018 SISR chal-result B,23,30,37]. While the rst class of approaches has
lenge B5]. Compared to the top-ranking team, our model a large memory footprint and a high computational cost, as
is marginally lower, but runs 5 times faster. it operates on upsampled images, the second class is more
prone to checkerboard artifacts/] due to simple concate-
nation of upsampling layers. Thus it remains challenging to
1. Introduction achieve high quality results for large upsampling factors.

In thi thod that i [
The widespread availability of high resolution displays n IS Paper, We proposs a metnod that IS progressive

q d ad tsin d | ina based i both in architecture and training. We design the network
and rapid advancements in deep learning based Image prog, reconstruct a high resolution image in intermediate steps

Alexander Sorkine-Hornung is now at Oculus. This work was com- DY progressively performing2 upsampling of the input
pleted during his time at Disney Research. from the previous level. As building blocks for each level
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Figure 2: Asymmetric pyramidal architecture. More DCUs are allocated in the lower pyramid level to improve the reconstruction accuracy and to reduce
memory consumption.

of the pyramid, we proposgense compression unitshich image priors such as heavy-tailed gradient distributions
are adapted from dense blocks] to suit super-resolution.  [10,29], gradient pro les 2], multi-scale recurrencelf],
Compared to existing progressive SISR models, P27, self-examples 11], and total variation 76]. In contrast,

we improve the reconstruction accuracy by simplifying the exemplar-based approaches such as nearest-neighfjor [
information propagation within the network; furthermore and sparse dictionary learning¢] 38, 40] have exploited

we propose to use asymmetric pyramidadtructure with the inherent redundancy of large-scale image datasets. Re-
more layers in the lower levels to enable high upsampling cently, Donget al. [6] showed the superiority of a simple
ratios while remaining ef cient. To obtain more photoreal- three-layer convolutional network (CNN) over sparse cod-
istic results, we adopt the GAN framework4] and design ing techniques. Since then, deep convolutional architectures
a discriminator that matches the progressive nature of ourhave consistently pushed the state-of-art forward.

generator network by operating on the residual outputs of
each scale. Such paired progressive design allows us to obpjrect vs. Progressive Reconstruction. Direct recon-

tain amulti-scalegenerator with a uni ed discriminator in stryction techniques’[ 20, 23, 24, 33, 37] upscale the im-

a S'”Q'? training. - age to the desired spatial resolution in a single step. Early
In this framework, we can naturally utilize a formadr- approaches 7} 20, 33 upscale the LR image in a pre-

riculum learning which is known to improve training’] processing step. Thus, the CNN learns to deblur the input

by organizing the learning process from easy (small upsam-image. However, this requires the network to learn a feature
pling factors) to hard (large upsampling factors). Compared yepresentation for a high-resolution image which is com-
to common multi-scale training, the proposed training strat- pytationally expensive3[]. To overcome this limitation,
egy not only improves results for all upsampling factors, but many approaches opt for operating on the low dimensional
also signi cantly shortens the total training time and stabi- features and perform upsampling at the end of the network
lizes the GAN training. via sub-pixel convolutionj(] or transposed convolution.

We evaluate our progressive multi-scale approach A popular progressive reconstruction approach is de-
against the state-of-art on a variety of datasets, where wescriped by LapSRN by Lait al. [21]. In their work, the up-
demonstrate improved performance in terms of traditional sampling follows the principle of Laplacian pyramids, i.e.
error measures (e.g., PSNR) as well as perceptual qualityeach level learns to predict a residual that should explain the

particularly for larger upsampling ratios. difference between a simple upscale of the previous level
and the desired result. Since the loss functions are com-
2. Related Work puted at each scale, this provides a form of intermediate su-

pervision. Laiet al. improved their method with deep and
wider recursive architecture and multi-scale trainiag]|
While [22] improved the accuracy, there remains a consid-
erable gap between the top-performing approach in terms
of PSNR P4]. In particular, as we show in Sectich?2,

Single image super-resolution techniques (SISR) have
been an active area of investigation for more than a
decade I7]. The ill-posed nature of this problem has typi-
cally been tackled using statistical techniques: most notably



the Laplacian pyramidal structure aggravates the optimiza-
tion dif culty. Furthermore, the recursive pyramids result + . .
in quadratic growth of computation in the higher pyramid

level, becoming the bottleneck for reducing runtime and
expanding the network capability. Lastly, in addition to a
progressive generator, we also propose a progressive dis
criminator along with a progressive training strategy. X
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Perceptual Loss Functions. The aforementioned tech-
niques optimize the reconstruction error by minimizing the
“1-norm and descendants such as the Charbonnier penalt
function [21]. Although these approaches yield small re-
construction errors, they are unable to hallucinate perceptu-
ally plausible high-frequencies details. To this end, Leatig

al. [27] proposed a perceptual loss function consisting of & Figyre 3: schematic illustration of the blending procedure in curriculum
content loss that captures perceptual similarities and an adtraining for the generator (top) and the discriminator (bottovg)aje , s
versary to steer the reconstruction closer to the latent man-denote the scale-speci ¢ input and reconstruction layer, @ndienotes
ifold of natural solutions. Based on this, Sajjatial. [26] f:ﬁ)gztri'?t'ﬁeoj]:&a&an;’ﬂ'es from 0 to 1 during blending to control the
apply an additional texture loss to encourage similarity with

the original image. In contrast to these works, we design a

discriminator that operates on the residual outputs of eachin the lower pyramid not only reduces the memory con-
scale and train progressively with a strategy based on cur-sumption but also increases the receptive eld with respect
riculum learning. With this, our GAN model is able to up- to the original image, hence it outperforms the symmet-
sample perceptually pleasing SR imagestuitiple scales  ric variant in terms of reconstruction quality and runtime.

w

up to8 . While the decomposition af is shared among the pyramid
levels, we also use two scale-speci ¢ sub-networks, denoted
3. Progressive Multi-scale Super-resolution by vs andrs, which allow for an individual transformation

between scale-varying image space and a normalized fea-
ture space. A schematic illustration of qunogressiveup-
sampling architecture is detailed in Figure

problem of estimating an upscaling function: X ! Y, To simplify learning, the network is designed to output
whereX andY denote the space of LR and HR images, ia residual

respectively. Finding a suitable parameterisation for the up-

scaling functionu for large upsampling ratios, is challeng- Rs(X)=(rs us Ug Vs)(X) Q)
ing: the larger the ratio, the more complex the function class
required.

To this end, we propose a progressive solution to learn
the upscaling functioru. In the following, we propose
our pyramidal architectureRroSR, for multi-scale super-
resolution in SectioR.1and3.2. In Section3.3we propose ¢ = Rs(X) + ' s(X): 2
ProGanSR, a progressive multi-scale GAN for perceptual )
enhancement. Finally, we discuss a curriculum learning ~ Notably, our network doesn't follow the Laplacian pyra-

Given a set ofi LR input images with corresponding HR

w.rt a xed upsampling of the input s(x) throughe.g
bicubic interpolation. Thus, for a given scaling factahe
estimated HR image can be computed as

scheme in SectioR.4. mid principle like in P1,27], i.e. the intermediate sub-net
_ - outputs are neither supervised nor used as base image in the
3.1. Pyramidal Decomposition subsequent level. Such design performs favorably over the

Laplacian alternative, as it simpli es the backward-pass and
thus reduces the optimization dif culty. Additionally we
do not downsample the groundtruth to create labels, which
is done for the intermediate supervision inl[27]. This
avoids artefacts that may result from subsampling.

We propose @yramidaldecomposition ofi into a series
of simpler functionsaup; : : :; us. Each function—or level—
is tasked with re ning the feature representation and per-
forming a2 upsampling of its own input. Each level of the
pyramid consists of a cascade aénse compression units
(DCUs) followed by a sub-pixel convolution layer. We as- 3.2. Dense Compression Units
sign more DCUs in the lower pyramid levels, resulting in

the asymmetric structureHaving more computation power We base the construction of each pyramid level on the

recently proposed DenseNet architecturd.[ Similarly to



skip connections]5], dense connections improve gradient square loss instead of the original cross-entropy 185§k [
ow alleviating vanishing and shattered gradient$ [ Denoting the predicted residual and real residua asdr ,

The core component in each level of the pyramid is a the discriminator loss and generator loss for a training ex-
dense compression unit (DCU), which consists of a modi- ample of scale can be expressed as
ed densely connected block followed Hy 1 convolution

Conv(1,1). Lp, S(D(M)?+(D(r7) 1) (3)
The original dense layer is composed of BNHRJ- Lk, =(D("®) 1)*+ (4)

Conv(1,1)-BN-RELU-CONV(3,3).  Following recent X K ) 2

practice in super-resolutio,[24, 39], we remove all batch kA k Yi '

- ! . K2f 2;4
normalizations. However, since the features from previous g

layers may have varying scales, we also remove the rstwhere | denotes thek-th pooling layer input in
ReLU to rescale the features witlo@v(1-1). Thisleadsto  VGG16 [31].
zé(r)r:\lo\;j(lse,g)(.jense layer composition: adiv(1,1)-ReLU 3.4. Curriculum Learning

Contrary to DenseNet, we break the dense connection at  Curriculum learning4] is a strategy to improve training
the end of each DCU with a@\v(1,1) compression layer, by gradually increasing the dif culty of the learning task. It
which re-assembles information ef ciently and leads to a is often used in sequence prediction tasks and in sequential
slight performance gain in spite of the breakage of densedecision making problems where large speedups in training
connection. For a very deep model we apply pyramid-wise time and improvements in generalisation performance can
as well as local residual links to improve the gradient prop- pe obtained.
agation as shown in Figute The pyramidal decomposition af allows us to apply
3.3. Progressive GAN curriculum learning in a natural way. The loss for a training

example(x?;y;) of scales can be de ned as
Generative adversarial networks (GANs)}4] have

emerged as a powerful method to enhance the perceptual Lr, = kRs(xP)+ " s (x7)  yike ®)

quality of the upsampled images4 23, 2¢] in SISR. wherex?$ corresponds t& downsampled version of;.
However, training GANSs is notoriously dif cult and suc-  Then the goal at scakeis to nd

cess at applying GANs to SISR has been limited to single- X X

scale upsampling at relatively low target resolutions. In or- s = argmin L'RS0 ; (6)

der to enable multi-scale GAN-enhanced SISR, we propose s s0 s i

modular and progressive discriminator n rk similar . . .
a modular and progressive disc . ato e.“’VO simiia to where s parameterises all functions in and below the cur-
the generator network proposed in the previous section. As

illustrated in the bottom of Figur8, the architecture has

a reverse pyramid structufel,; us; ugg, where each level
gradually reduces the spatial dimension of the input image
with AvGPOOLING. Similar to the generator, scale-speci ¢
image transformation layefgcqe are implied before each
pyramid. To accommodate the multi-scale outputs from the
generator, the network is fully convolutional and outputs a
small patch of features similar to PatchGAN. The com-
plete specs of the discriminator can be found in the supple-
mental material.

Similar to the generator network, the discriminator op-
erates on the residual between the original and bicubic up-
sampled image. This allows bOt_h generator and dlscr|m!- tial dimensions before merging. In both cases;ontrols
nator to concentrate only on the important sources of vari-

. . the in uence of the new pyramid and thus it varies from
ation which are not already well captured by the standa'rdo to 1 during the blending procedure. As a result we incre-

10 unsample well. thev correspond to the laraest perce gmentally add training pairs of the next scale. While a similar
P pie wetl, y P gest p Pridea was proposed iri §] to improve high-resolution image
tual errors. This can also be viewed as subtracting a data-

) S ) generation, we use this strategy in the contexnafti-scale
dependent. baseline from the discriminator which helps to training. Finally, to assemble the batches, we randomly se-
reduce variance.

L S lect one of the scales to avoid mixing batch statistics as
As the training objective, we use the more stable Ieas’[Suggested in.

midal network shown in Figur@. Our training curriculum
starts by training only th2 portion of the network. When
we proceed to a new phase in the curriculteng(to 4 ),

a new level of the pyramid is gradually blended in to re-
duce its impact on the previously trained layers. As Figure
shows, for the generator the predicted residyadt scales

is a linear combination of the outputs from legednds 1,
while in analog for the discriminator, the output features
from the new pyramid are combined with the output of the
scale-speci c input layer from the previous lewglae 1,

ear interpolation and YGPooL are used to match the spa-



Compared to simple multi-scale training where training Asymmetric Pyramid. In this section we show the ad-
examples from different scales are simultaneously fed to thevantage of the proposed asymmetric pyramidal architecture.
network, such progressive training strategy greatly shortensWe compare the following constellations while keeping the
the total training time. Furthermore, it yields a further per- total number of DCUs constant:
formance gain for all included scales compared to single-
scale and simple multi-scale training and alleviates instabil-
ities in GAN training.

Model Architecture

Direct D D D D S S
AsymmetricPyramid D D D S D S

4. Evaluation Here,D denotes a dense compression unit véittlense
layers andS denotes the sub-pixel upsampler. As Table
shows, the asymmetric pyramidal architecture considerably
improves the reconstruction accuracy compared to direct
upsampling. This demonstrates the advantage of utilizing
high-dimensional features directly. Furthermore, by assign-
ing more computation in the lower pyramid, the penalty
in memory and computation consumption compared to di-
rect upsample approach is signi cantly reduced. As shown
in Table 1, for small model, asymmetric pyramid model
achieves the same runtime as direct upsampling.

Before we compare with popular state-of-the-art ap-
proaches, we rst discuss the bene ts of each of our pro-
posed components using a small 24-layer model.

All presented models are trained with the DIV2K/]
training set, which contains 800 high-resolution images.
The training details are listed in the supplemental material.
For evaluation, the benchmark datasets S&t¥et14 [11],
BSD100 [1], Urban100 [ 7], and the DIV2K validation set
[34] are used. As it is commonly done in SISR, all evalua-
tions are conducted on the luminance channel.

4.1. Ablation study Curriculum Learning. We extend the 4-DCU asymmet-
ric pyramid model td8 upsampling to quantify the ben-
et of curriculum learning over simultaneous multi-scale

Ablation Study  Method PSNR Parameters runtime . . . .
Y training. As Table2 shows, simultaneous training typically
] Single Dense Block, has small or even negative impact on the lowest s&alg,(
Baseline gierﬁg cyerBREBRE28.30 8.22M - 0195 which is also evident in VDSRY[] (see Table 2). On the

other hand, curriculum learning always improves the recon-
struction quality and outperforms simultaneous training by
an average of 0.04dB.

Block Division 4 DCUs 2832 1.79M 0.11s
Architecture Asymmetric Pyramid  28.41 1.89M  0.11s

Training Curriculum Learning 2845 1.89M  0.11s Furthermore, curriculum learning considerably shortens
Increased network the training time. As Figurd shows, the network reaches
Very Deep Modelvidth and depth 28.94 13.4M 0.27s

the same number of epochs and quality faster than simulta-
neous training, since th2 subnet requires less computa-

Table 1: Overview of experiments in the ablation study. The introduction tion and hence less time for each update.

of DCUSs, block division, an asymmetric pyramid layout, and curriculum . . . .
learning allow to consistently increase reconstruction quality. Reported 4.2. Comparison with other progressive architec-
PSNR values refer td  results of Setl4. The runtime is tested for tures.

upscaling ofl28 128image.

longer training

In contrast to our approach, existing progressive methods
Table 1 summarizes the consistent increase in recon-[21, 27] typically rely on deep supervision. They impose a
struction quality stemming from each proposed component.loss on all scales which can be denoted as
As a baseline, we start from a single dense block with two _ 0
sub-pixel upsampling layers in the end and a residual con- Ls= 1oy T yn)s ()
nection from the LR input to the nal output. In the follow- sf<s

ing, we describe the individual steps in more detail. with < being a downsampling operation to scai®

) ) Futhermore, following the structure of a Laplacian pyramid,
Dense Compression Units. To demonstrate the bene tof  gach Jevel is encouraged to learn the difference between a
DCUs described in Sectidh2, we replace the single-block  picypic upscale of the previous level instead of the upsam-

from the baseline model with multiple DCUs. As Talile led LR image. Thus the residual connections are given by
shows, the number of network parameters can be drastically
reduced without harming the reconstruction accuracy. We P =S+, ys 1o (8)

can even observe a slight performance gain as the network
is able to reassemble features more ef ciently due to the where' » denotes an upscaling operator by a factor of 2.
injection of compression layers.



Improvement
w.r.t single-scale
2 /4 /8 (dB)

Set5

Setl4

B100

U100

DIV2K

average

simultaneous
curriculum

-0.05/+0.09/-0.01
+0.05/+0.11/+0.08

+0.01/+0.03/+0.05
+0.08/+0.04/+0.06

+0.02/+0.01/+0.03
+0.07/+0.03/+0.05

+0.12/+0.06/+0.08
+0.21/+0.09/+0.08

+0.06/-0.02/+0.05
+0.13/+0.02/+0.05

+0.06/+0.02/+0.05
+0.13/+0.05/+0.06

Table 2: Gain of simultaneous training and curriculum learning w.r.t. single-scale training on all datasets. The average is computed accounting the number
of images in the datasets. Curriculum learning improves the training for all scales while simultaneous training hampers the training of the lowest scale.
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Figure 4: Training time comparison between curriculum learning and multiscale simultaneous learning. We train the multiscale model and plot the PSNR
evaluation of the individual scales. The elapsed epoch is encoded as the line color. Because curriculum learning activates the smaller subnets rst, it requires

much less time to reach the same evaluation quality.

DRRN, that have been retrained wigh data. To produce

B100 Setl4 !
model 8 EDSR results, we extend thelr model by adding an-

2 4 8 2 4 8 other sub-pixel convolution layer. For training, we follow
single ours - 2744 - T oea1 - their practice which means we initialize the weights of the
scale  alt . 2732 . . 2820 - 8 model from the pretrained model.
multi ours 31.95 27.47 2475 33.24 2845 24.86 Due to dscrgp_ancy n the model size within existing ap-
scale alt 3192 27.38 2470 33.22 2828 24.76 proaches, we divide them into two classes based on whether

Table 3: Comparison with other progressive approaches.

they have more or less th&million parameters. Accord-
ingly, we provide two models with different sizes, denoted
as ProSR and ProSR, to compete in both classes. PraSR
has 56 dense layers in total with growth-rate 12 and a

We also evaluate such alternative progressive architec+total of 3.1M parameters. ProSRas 104 dense layers with
ture but observed large decrease in PSNR as shown in Tagrowth-ratek = 40 and 15.5M parameters which is roughly
ble 3. Therefore, we conclude that it is less stable to use a third of the parameters of EDSR.
varying sub-scale upsampling results as base images com- Table 4 summarizes the quantitative comparison with
pared to xed interpolated results and that using a down- other state-of-the-art approaches in terms of PSNR. An ex-
sampling kernel to create the HR label images could intro- tended list that includes SSIM scores can be found in the
duce undesired artefacts.

4.3. Comparison with State-of-the-art Approaches

supplemental material. As Tablleshows, ProSRachieves
the lowest error in most datasets. The very deep model,
ProSR, shows consistent advantage in higher upsampling

In this section, we provide an extensive quantitative ratios and is comparable with EDSR2n . In general, our
and qualitative comparison with other state-of-the-art ap- progressive design allows to raise the margin in PSNR be-

proaches.

Quantitative Comparison.

SRN [21], MsLapSRN p7], EDSR 4.

For a quantitative compari-
son, we benchmark against VDSRJ], DRRN [37], Lap-

We obtained

models from Laiet al. [27] for 8 versions of VDSR and

tween our results and the state-of-the art as the upsampling
ratio increases.

Qualitative comparison. First, we qualitatively compare
our method without GAN to other methods that also min-
imise the'; loss or related norms. Figuieshow results of
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Figure 5: Comparison af GAN results (best viewed when zoomed in). Our approach is less prone to artefacts and aligns well with the original image.
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Figure 6: Hallucinated details & upsample result with adversarial loss.

our method and the most recent state-of-the-art approacheknown downsampling kernels (bicubic). We participated in
in4 and8 . the challenge with the ProSRietwork. In addition to the
Concerning our perceptually-driven model with GAN, method described above, we utilised the geometry ensemble
we compare with SRGANZ3] and EnhanceNet’[]. As used in 4], which yielded a 0.07dB PSNR gain in the val-
Figure5 shows, the hallucinated details align well with ne idation set. Our model ranks 2nd in terms of SSIM and 4th
structures in the ground truth, even though we do not havein terms of PSNR. Compared to the top-ranking team, our
an explicit texture matching loss as EnhanceNé&}[While model is marginally lower by 0.002 and 0.04dB in SSIM
SRGAN and EnhanceNet can only upscéle our method and PSNR respectively, but runs 5 times as fast in test time.

is able to extend t8 . Results are shown in Figufe We Other tracks in the challenge targét upscaling but
provide an extended qualitative comparison in the supple-consider unknown degradation. Given that this task is dif-
mental material. ferent to the bicubi® setting, the participating teams and
the rankings differ. Without speci ¢ adaptation for this sce-
5. Runtime. nario, we also participated in these tracks for completeness

and ranked in the mid-range (7th/9th/7th). We believe fur-
ther improvement can be achieved with targeted preprocess-
ing and extended training data.

The asymmetric pyramid architecture contributes to
faster runtime compared to other approaches that have sim
ilar reconstruction accuracy. In our test environment with
NVIDIA TITAN XP and cudnn6.0, ProSRtakes on av-
erage 0.8s, 2.1s and 4.4s to upsamp&2@ 520image
by2 ,4 and8 . Inthe NTIRE challenge, we reported In this work we propose a progressive approach to ad-
the runtime including geometric ensemble, which requires dress SISR. We leverage asymmetric pyramid design and
8 forward passes for each transformed version of the inputDense Compression Units in the architecture, both of which
image. Nonetheless, our runtime is still 5 times faster thanlead to improved memory ef ciency and reconstruction ac-

7. Conclusion

the top-ranking team. curacy. A matching pyramidal discriminator is proposed,
which enables optimizing for perceptual quality simultane-
6. NTIRE Challenge ously for multiple scale. Furthermore we leverage a form

of curriculum learning which not only increases the perfor-
mance for all scales but also reduces the total training time.
Our models sets a new state-of-the-art benchmark in both
traditional error measures and perceptual quality.

The “New Trends in Image Restoration and Enhance-
ment” (NTIRE) 2018 super-resolution challengs] aims
at benchmarking SISR methods in challenging scenarios.
In particular, one of the challenge tracks targgtsup-
scaling, where the low resolution images are generated with



PSNR 2 4 8
S14 B100 UL00 DIV2K S14 B100 U100 DIV2K S14 B100 U100 DIV2K

# params< 5M

VDSR 33.05 3190 30.77 35.26 28.02 27.29 2518 29.72 2426 2449 2170 26.22
DRRN 33.23 32.05 3123 3549 2821 27.38 2544 2995 2442 2459 21.88  26.37
LapSRN 33.08 31.80 3041 3563 2819 2732 2521 2988 2435 2454 2181 26.40
MsLapSRN 33.28 32.05 31.15 3562 2826 27.43 2551 30.39 2457 2465 22.06 26.52
SRDenseNet - - - - 28.50 27.5326.05 - - - -

ProSR (ours) 33.36 32.02 3142 3580 2859 27.58 26.01 30.39 2493 2480 2243 26.88

# params> 5M

EDSR 33.92 3232 3293 3647 2880 27.71 26.64 3071 2496 2483 2253 26.96

ProSR (ours) 3400 3234 3291 36.44 28.94 27.79 26.89 30.81 2529 2499 23.04 27.36

Table 4: Comparison with state-of-the-art approaches. For clarity, we highlight the best approlaeh in

8 LR DRRN[3J  MsLapSRNPZ  EDSRP4  ProSR (Ours) HR
24.31dB/0.6627 24.29 dB/0.667 24.96 dB/0.699 25.18 dB/0.708

8 LR DRRN [33] MsLapSRN p?] EDSR 4] ProSR (Ours) HR
27.55dB/0.7663 27.62 dB/0.769 27.93 dB/0.776 28.20 dB/0.781

DRRN[33  MsLapSRNPZ  EDSRP4  ProSR (Ours) HR
21.50 dB/0.5218 21.49 dB/0.524 21.79 dB/0.553 21.86 dB/0.557

DRRN [33] MsLapSRN p?] EDSR 4] ProSR (Ours) HR
22.32dB/0.6926 22.25dB/0.698 22.91dB/0.719 22.93 dB/0.715

Figure 7: Visual comparison with other state-of-the-art methods.
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