PL 0.13.1, Windows 10, Py 3.8.10
This is odd. It’s a regression, with only 61 rows. batch size = 32; loss was cross-entropy. There’s nothing wrong with the data in the CSV file as far as I can see.
After further experiments it seems the cross-entropy loss is the culprit - no problem if batch size = 32 with quadratic loss.
Error during training!
Traceback (most recent call last):
File "perceptilabs\coreInterface.py", line 32, in perceptilabs.coreInterface.TrainingSessionInterface.run_stepwise
File "perceptilabs\coreInterface.py", line 33, in perceptilabs.coreInterface.TrainingSessionInterface.run_stepwise
File "perceptilabs\coreInterface.py", line 52, in _main_loop
File "perceptilabs\trainer\base.py", line 174, in run_stepwise
File "perceptilabs\trainer\base.py", line 289, in _loop_over_dataset
File "perceptilabs\trainer\base.py", line 443, in perceptilabs.trainer.base.Trainer._update_tracked_values
File "perceptilabs\layers\iooutput\stats\numerical.py", line 216, in perceptilabs.layers.iooutput.stats.numerical.NumericalOutputStatsTracker.update
File "perceptilabs\stats\r_squared.py", line 76, in perceptilabs.stats.r_squared.RSquaredStatsTracker.update
File "perceptilabs\stats\r_squared.py", line 89, in perceptilabs.stats.r_squared.RSquaredStatsTracker._store_r_squared_values
File "c:\users\julian\anaconda3\envs\pl_tf250_py3810\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f
return f(*args, **kwargs)
File "c:\users\julian\anaconda3\envs\pl_tf250_py3810\lib\site-packages\sklearn\metrics\_regression.py", line 676, in r2_score
y_type, y_true, y_pred, multioutput = _check_reg_targets(
File "c:\users\julian\anaconda3\envs\pl_tf250_py3810\lib\site-packages\sklearn\metrics\_regression.py", line 90, in _check_reg_targets
y_pred = check_array(y_pred, ensure_2d=False, dtype=dtype)
File "c:\users\julian\anaconda3\envs\pl_tf250_py3810\lib\site-packages\sklearn\utils\validation.py", line 63, in inner_f
return f(*args, **kwargs)
File "c:\users\julian\anaconda3\envs\pl_tf250_py3810\lib\site-packages\sklearn\utils\validation.py", line 720, in check_array
_assert_all_finite(array,
File "c:\users\julian\anaconda3\envs\pl_tf250_py3810\lib\site-packages\sklearn\utils\validation.py", line 103, in _assert_all_finite
raise ValueError(
ValueError: Input contains NaN, infinity or a value too large for dtype('float32').
Model looks like this:
Data file attachedUniform-X, Nyqist x 5.zip (1.7 KB)